Eliminate the arbitrary constants indicated in brackets from the following equation
and form corresponding partial differential equation:
e
1
{z−(
x2
y
)}
=
ax
2
y2 +
b
y
;(a,b)
"\\displaystyle\ne^{z - x^2y} = ax^2y^2 + by\\\\\n\ne^{z - x^2y}\\left(\\frac{\\partial z}{\\partial x} - 2xy\\right) = 2axy^2\\\\\n\ne^{z - x^2y}\\left(\\frac{\\partial z}{\\partial y} - x^2\\right) = 2ax^2y + b\\\\\n\ne^{z - x^2y}\\left(\\left(\\frac{\\partial z}{\\partial x} - 2xy\\right)^2 + \\frac{\\partial^2 z}{\\partial x^2} - 2x\\right) = 2ay^2\\\\\n\n\ne^{z - x^2y}\\left(\\left(\\frac{\\partial z}{\\partial y} - x^2\\right)^2 + \\frac{\\partial^2 z}{\\partial y^2}\\right) = 2ax^2\\\\\n\n\\frac{e^{z - x^2y}}{y^2}\\left(\\left(\\frac{\\partial z}{\\partial x} - 2xy\\right)^2 + \\frac{\\partial^2 z}{\\partial x^2} - 2x\\right) = \\frac{e^{z - x^2y}}{x^2}\\left(\\left(\\frac{\\partial z}{\\partial y} - x^2\\right)^2 + \\frac{\\partial^2 z}{\\partial y^2}\\right)\\\\\n\n\nx^2\\left(\\frac{\\partial z}{\\partial x} - 2xy\\right)^2 + x^2\\frac{\\partial^2 z}{\\partial x^2} - 2x^3 = y^2\\left(\\frac{\\partial z}{\\partial y} - x^2\\right)^2 + y^2\\frac{\\partial^2 z}{\\partial y^2}\\\\\n\n\\left(x\\frac{\\partial z}{\\partial x} - 2x^2y - y\\frac{\\partial z}{\\partial y} + x^2y\\right)\\left(x\\frac{\\partial z}{\\partial x} - 2x^2y + y\\frac{\\partial z}{\\partial y} - x^2y\\right) + x^2\\frac{\\partial^2 z}{\\partial x^2} - y^2\\frac{\\partial^2 z}{\\partial y^2} - 2x^3 = 0"
Comments
Leave a comment