Eliminate the arbitrary constants indicated in brackets from the following equation
and form corresponding partial differential equation:
e
1
{z−(
x2
y
)}
=
ax
2
y2 +
b
;(a,b)
ez−x2y=ax2y2+byez−x2y(∂z∂x−2xy)=2axy2ez−x2y(∂z∂y−x2)=2ax2y+bez−x2y((∂z∂x−2xy)2+∂2z∂x2−2x)=2ay2ez−x2y((∂z∂y−x2)2+∂2z∂y2)=2ax2ez−x2yy2((∂z∂x−2xy)2+∂2z∂x2−2x)=ez−x2yx2((∂z∂y−x2)2+∂2z∂y2)x2(∂z∂x−2xy)2+x2∂2z∂x2−2x3=y2(∂z∂y−x2)2+y2∂2z∂y2(x∂z∂x−2x2y−y∂z∂y+x2y)(x∂z∂x−2x2y+y∂z∂y−x2y)+x2∂2z∂x2−y2∂2z∂y2−2x3=0\displaystyle e^{z - x^2y} = ax^2y^2 + by\\ e^{z - x^2y}\left(\frac{\partial z}{\partial x} - 2xy\right) = 2axy^2\\ e^{z - x^2y}\left(\frac{\partial z}{\partial y} - x^2\right) = 2ax^2y + b\\ e^{z - x^2y}\left(\left(\frac{\partial z}{\partial x} - 2xy\right)^2 + \frac{\partial^2 z}{\partial x^2} - 2x\right) = 2ay^2\\ e^{z - x^2y}\left(\left(\frac{\partial z}{\partial y} - x^2\right)^2 + \frac{\partial^2 z}{\partial y^2}\right) = 2ax^2\\ \frac{e^{z - x^2y}}{y^2}\left(\left(\frac{\partial z}{\partial x} - 2xy\right)^2 + \frac{\partial^2 z}{\partial x^2} - 2x\right) = \frac{e^{z - x^2y}}{x^2}\left(\left(\frac{\partial z}{\partial y} - x^2\right)^2 + \frac{\partial^2 z}{\partial y^2}\right)\\ x^2\left(\frac{\partial z}{\partial x} - 2xy\right)^2 + x^2\frac{\partial^2 z}{\partial x^2} - 2x^3 = y^2\left(\frac{\partial z}{\partial y} - x^2\right)^2 + y^2\frac{\partial^2 z}{\partial y^2}\\ \left(x\frac{\partial z}{\partial x} - 2x^2y - y\frac{\partial z}{\partial y} + x^2y\right)\left(x\frac{\partial z}{\partial x} - 2x^2y + y\frac{\partial z}{\partial y} - x^2y\right) + x^2\frac{\partial^2 z}{\partial x^2} - y^2\frac{\partial^2 z}{\partial y^2} - 2x^3 = 0ez−x2y=ax2y2+byez−x2y(∂x∂z−2xy)=2axy2ez−x2y(∂y∂z−x2)=2ax2y+bez−x2y((∂x∂z−2xy)2+∂x2∂2z−2x)=2ay2ez−x2y((∂y∂z−x2)2+∂y2∂2z)=2ax2y2ez−x2y((∂x∂z−2xy)2+∂x2∂2z−2x)=x2ez−x2y((∂y∂z−x2)2+∂y2∂2z)x2(∂x∂z−2xy)2+x2∂x2∂2z−2x3=y2(∂y∂z−x2)2+y2∂y2∂2z(x∂x∂z−2x2y−y∂y∂z+x2y)(x∂x∂z−2x2y+y∂y∂z−x2y)+x2∂x2∂2z−y2∂y2∂2z−2x3=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments