y=n=0∑+∞cnxn ,
y′′=n=0∑+∞n(n−1)cnxn−2=n=0∑+∞(n+2)(n+1)cn+2xn
y′′+9y=n=0∑+∞((n+2)(n+1)cn+2+9cn)xn=0
(n+2)(n+1)cn+2+9cn=0
cn+2=(n+2)(n+1)−9cn
c2n=(2n)!(−9)nc0
c2n+1=(2n+1)!(−9)nc1
y=n=0∑+∞(2n)!(−9)nc0xn+n=0∑+∞(2n+1)!(−9)nc1xn
y=c0cos3x+c1sin3x
Comments