dx2d2y=dxd(dxdy)=dxdp=dydp(dxdy)=pdydp
p=dxdy Then
y(pdydp)=2p+p2
p=0 or ydydp=p+2 p=0=>dxdy=0=>y=C1
p+2dp=ydy
∫p+2dp=∫ydy
p+2=C2y
dxdy=C2y−2
C2y−2dy=dx
C21ln∣C2y−2∣=x+C21lnC3
C2y−2=C3eC2x
y=C22+C4eC2x,C2=0
y=−2x+C5,C2=0 y=C1
y=−2x+C5
y=C22+C4eC2x,C2=0
Comments