Question #156206
If p = dy/dx, show that d^2y/ dx^2 = p(dp/dy).
Hence find the solution y = f(x) of the differential equation y(d^2y/dx^2) = 2(dy/dx) + (dy/dx)^2.
1
Expert's answer
2021-01-26T03:20:37-0500
d2ydx2=ddx(dydx)=dpdx=dpdy(dydx)=pdpdy\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}(\dfrac{dy}{dx})=\dfrac{dp}{dx}=\dfrac{dp}{dy}(\dfrac{dy}{dx})=p\dfrac{dp}{dy}

p=dydxp=\dfrac{dy}{dx}

Then


y(pdpdy)=2p+p2y(p\dfrac{dp}{dy})=2p+p^2

p=0 or ydpdy=p+2p=0\ or\ y\dfrac{dp}{dy}=p+2

p=0=>dydx=0=>y=C1p=0=>\dfrac{dy}{dx}=0=>y=C_1


dpp+2=dyy\dfrac{dp}{p+2}=\dfrac{dy}{y}

dpp+2=dyy\int\dfrac{dp}{p+2}=\int\dfrac{dy}{y}

p+2=C2yp+2=C_2y

dydx=C2y2\dfrac{dy}{dx}=C_2y-2

dyC2y2=dx\dfrac{dy}{C_2y-2}=dx

1C2lnC2y2=x+1C2lnC3\dfrac{1}{C_2}\ln|C_2y-2|=x+\dfrac{1}{C_2}\ln C_3

C2y2=C3eC2xC_2y-2=C_3e^{C_2x}

y=2C2+C4eC2x,C20y=\dfrac{2}{C_2}+C_4e^{C_2x}, C_2\not=0

y=2x+C5,C2=0y=-2x+C_5, C_2=0

y=C1y=C_1

y=2x+C5y=-2x+C_5

y=2C2+C4eC2x,C20y=\dfrac{2}{C_2}+C_4e^{C_2x}, C_2\not=0




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS