Given equation is Lagrange's linear equation Pp+Qq=R
The auxiliary equation is: x2−y2−z2dx=2xydy=2xzdz
Taking two last ratios:
2xydy=2xzdz⟹ydy=zdz
Integrating lny=lnz+lna⟹y=az
Taking Lagrangian multipliers as, x,y,z, each ratios of x2−y2−z2dx=2xydy=2xzdz
=x(x2−y2−z2)+2xy2+2xz2xdx+ydy+zdz=x(x2+y2+z2)xdx+ydy+zdz
Now take,
2xydy=x(x2+y2+z2)xdx+ydy+zdz⟹ydy=(x2+y2+z2)d(x2+y2+z2) ⟹logy=logx2+y2+z2 ⟹y=x2+y2+z2
f(zy,yx2+y2+z2)=0
Comments