Question #157237

(x2-y2-z2) p+2xyz=2xz


1
Expert's answer
2021-01-26T03:16:33-0500

Given equation is Lagrange's linear equation Pp+Qq=RPp+Qq=R

The auxiliary equation is: dxx2y2z2=dy2xy=dz2xz\frac{dx}{x^2-y^2-z^2}=\frac{dy}{2xy}=\frac{dz}{2xz}

Taking two last ratios:

dy2xy=dz2xz    dyy=dzz\frac{dy}{2xy}=\frac{dz}{2xz} \implies \frac{dy}{y}=\frac{dz}{z}

Integrating lny=lnz+lna    y=az\ln{y}=\ln{z}+\ln{a} \implies y=az

Taking Lagrangian multipliers as, x,y,z, each ratios of dxx2y2z2=dy2xy=dz2xz\frac{dx}{x^2-y^2-z^2}=\frac{dy}{2xy}=\frac{dz}{2xz}

=xdx+ydy+zdzx(x2y2z2)+2xy2+2xz2=xdx+ydy+zdzx(x2+y2+z2)=\frac{xdx+yd{y}+zdz}{x(x^2-y^2-z^2)+2xy^2+2xz^2}=\frac{xdx+yd{y}+zdz}{x(x^2+y^2+z^2)}

Now take,

dy2xy=xdx+ydy+zdzx(x2+y2+z2)    dyy=d(x2+y2+z2)(x2+y2+z2)\frac{dy}{2xy}=\frac{xdx+ydy+zdz}{x(x^2+y^2+z^2)} \implies \frac{dy}{y}=\frac{d(x^2+y^2+z^2)}{(x^2+y^2+z^2)}     logy=logx2+y2+z2\implies \log{y}=\log{x^2+y^2+z^2}     y=x2+y2+z2\implies y=x^2+y^2+z^2

f(yz,x2+y2+z2y)=0f(\frac{y}{z},\frac{x^2+y^2+z^2}{y})=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS