A 10-FT LONG ROD HAS BOTH OF ITS ENDS INSULATED DURING HEATING OPERATION. BUT EVEN AT ITS INITIAL OPERATION (T=0), THE ROD IS ALREADY LATERALLY INSULATED. FIND U(X,T) IF THE THERMAL DIFFUSIVITY EQUALS 1.5 (X=5.0)
The heat equation:
"\\frac{\\partial u}{\\partial t}=k\\frac{\\partial^2u}{\\partial x^2}"
We have:
"k=1.5"
"\\frac{\\partial u}{\\partial x}_{x=0}=\\frac{\\partial u}{\\partial x}_{x=L}=0"
"f(x)=u(x,0)=5"
The solution of heat equation:
"u(x,t)=(Acos\\lambda x+Bsin\\lambda x)e^{-k^2\\lambda^2t}"
Applying conditions:
"u(x,0)=Acos\\lambda x+Bsin\\lambda x=5"
"\\frac{\\partial u}{\\partial x}=(B\\lambda cos\\lambda x-A\\lambda sin\\lambda x)e^{-k^2\\lambda^2t}"
"\\frac{\\partial u}{\\partial x}_{x=0}=B\\lambda e^{-k^2\\lambda^2t}=0\\implies B=0"
"\\frac{\\partial u}{\\partial x}_{x=L}=-A\\lambda sin(\\lambda L)e^{-k^2\\lambda^2t}=0\\implies \\lambda=\\pi n\/L"
"u(x,t)=5e^{-k^2\\lambda^2t}=5e^{-k^2\\pi^2n^2t\/L^2}"
"u(x,t)=5e^{-2.25\\pi^2n^2t\/100}=5e^{-0.22n^2t}"
Comments
Leave a comment