The heat equation:
∂t∂u=k∂x2∂2u
We have:
k=1.5
∂x∂ux=0=∂x∂ux=L=0
f(x)=u(x,0)=5
The solution of heat equation:
u(x,t)=(Acosλx+Bsinλx)e−k2λ2t
Applying conditions:
u(x,0)=Acosλx+Bsinλx=5
∂x∂u=(Bλcosλx−Aλsinλx)e−k2λ2t
∂x∂ux=0=Bλe−k2λ2t=0⟹B=0
∂x∂ux=L=−Aλsin(λL)e−k2λ2t=0⟹λ=πn/L
u(x,t)=5e−k2λ2t=5e−k2π2n2t/L2
u(x,t)=5e−2.25π2n2t/100=5e−0.22n2t
Comments