Let us solve the system:
{(D−1)x+Dy=0Dx+2Dy=4e2t
{Dy=−(D−1)xDx+2Dy=4e2t
{Dy=−(D−1)xDx−2(D−1)x=4e2t
{Dy=−(D−1)x−(D−2)x=4e2t
{Dy=−(D−1)x(D−2)xe−2t=−4
{Dy=−(D−1)xD(xe−2t)=−4
{Dy=−(D−1)xxe−2t=−4t+C1
{Dy=−(D−1)xx=−4te2t+C1e2t
{Dy=4e2t+8te2t−2C1e2t−4te2t+C1e2t=4e2t+4te2t−C1e2tx=−4te2t+C1e2t
We conclude that the solution is of the following form:
{y=e2t+2te2t−21C1e2t+C2x=−4te2t+C1e2t
Comments