Question #157224

(D-1)x + Dy = 0

Dx + 2Dy = 4e2te^2t


1
Expert's answer
2021-01-22T02:28:29-0500

Let us solve the system:


{(D1)x+Dy=0Dx+2Dy=4e2t\begin{cases} (D-1)x + Dy = 0\\ Dx + 2Dy = 4e^{2t} \end{cases}


{Dy=(D1)xDx+2Dy=4e2t\begin{cases} Dy = -(D-1)x \\ Dx + 2Dy = 4e^{2t} \end{cases}


{Dy=(D1)xDx2(D1)x=4e2t\begin{cases} Dy = -(D-1)x \\ Dx - 2(D-1)x = 4e^{2t} \end{cases}


{Dy=(D1)x(D2)x=4e2t\begin{cases} Dy = -(D-1)x \\ -(D-2)x = 4e^{2t} \end{cases}


{Dy=(D1)x(D2)xe2t=4\begin{cases} Dy = -(D-1)x \\ (D-2)xe^{-2t} = -4 \end{cases}


{Dy=(D1)xD(xe2t)=4\begin{cases} Dy = -(D-1)x \\ D(xe^{-2t}) = -4 \end{cases}


{Dy=(D1)xxe2t=4t+C1\begin{cases} Dy = -(D-1)x \\ xe^{-2t} = -4t+C_1 \end{cases}


{Dy=(D1)xx=4te2t+C1e2t\begin{cases} Dy = -(D-1)x \\ x = -4te^{2t}+C_1e^{2t} \end{cases}


{Dy=4e2t+8te2t2C1e2t4te2t+C1e2t=4e2t+4te2tC1e2tx=4te2t+C1e2t\begin{cases} Dy = 4e^{2t}+8te^{2t}-2C_1e^{2t}-4te^{2t}+C_1e^{2t}= 4e^{2t}+4te^{2t}-C_1e^{2t}\\ x = -4te^{2t}+C_1e^{2t} \end{cases}


We conclude that the solution is of the following form:


{y=e2t+2te2t12C1e2t+C2x=4te2t+C1e2t\begin{cases} y =e^{2t}+2te^{2t}-\frac{1}{2}C_1e^{2t}+C_2\\ x = -4te^{2t}+C_1e^{2t} \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS