u(x,t)=X(x)T(t)uxx(x,t)=X′′(x)T(t)ut=X(x)T′(t)X′′(x)T(t)=1001X(x)T′(t)X(x)100X′′(x)=T(t)T′(t)=K∫T(t)T′(t)dt=∫Kdtln(T(t))=Kt+CT(t)=eKt+C=AeKtX(x)100X′′(x)=KX(x)X′′(x)=100KX′′(x)−100KX(x)=0IfKis chosen to be negativesayK=−λ2,thenX′′=−100λ2X(x)∴X=Bcos(10x)+Csin(10x)u(x,t)=Ae−λ2t(Bcos(10x)+Csin(10x))=e−λ2t(Dcos(10x)+Esin(10x))u(0,t)=De−λ2t=Ae−dt∴A=D,andd=λ2u(x,0)=Dcos(10x)+Esin(10x)=0x→0limu(x,0)=x→0lim(Dcos(10x)+Esin(10x))=0⟹D=0.∴u(x,t)=Ee−dtsin(10x)
Comments