Z^3=pqxy by jacobi's method
p=-u1/u3; q=-u2/u3
z3=u1u2xy/u32
z3u32 - u1u2xy=0
"\\frac{dx}{-u_2xy}=\\frac{dy}{-u_1xy}=\\frac{dz}{2z^3u_3}=\\frac{du_1}{u_1u_2y}=\\frac{du_2}{u_1u_2x}=\\frac{du_3}{-3z^2u_3^2}"
u1dx=u2dy=a
"\\frac{dz}{2z}= \\frac{du_3}{-3u_3}"
"\\frac{log(z)}{2}= \\frac{log(u_3)}{-3}"
u3=ze-3/2+b
u=2a+(ze-3/2 + b)dz=2a+z2e-3/2/2+bz+c
u=c
2a+z2e-3/2/2+bz=0
"z=\\frac{-b^+_- \\sqrt{b^2-4ae^{-3\/2}}}{e^{-3\/2}}"
Comments
Leave a comment