Question #159084

Verify that the total differential equation(1+yz)dx+x(z-x)dy-(1+xy)dz=0 is integrable and hence find its integral.


1
Expert's answer
2021-02-01T07:23:30-0500

Necessary and sufficient condition for the total differential equation Pdx+Qdy+Rdz=0Pdx+Qdy+Rdz=0


to be integrable is P(R/yQ/z)Q(R/xP/z)++R(Q/xP/y)=0P(∂R/∂y-∂Q/∂z)-Q(∂R/∂x-∂P/∂z)+ +R(∂Q/∂x-∂P/∂y)=0

P=1+yzP=1+yz

P/z=y∂P/∂z=y

P/y=z∂P/∂y=z

Q=x(zx)Q=x(z-x)

Q/x=z2x∂Q/∂x=z-2x

Q/z=x∂Q/∂z=x

R=(1+xy)R=-(1+xy)

R/x=y∂R/∂x=-y

R/y=x∂R/∂y=-x


According to the given equation

(1+yz)(xx)x(zx)(yy)+(1xy)(z2xz)==2x2xyz+2xyz2x2y+2x+2x2y=0(1+yz)(-x-x)-x(z-x)(-y-y)+(-1-xy)(z-2x-z)=\\ =-2x-2xyz+2xyz-2x^2 y+2x+2x^2 y=0


So it is integrable.

 

Let y=consty=const

(1+yz)dx(1+xy)dz=0(1+yz)dx-(1+xy)dz=0

Integrate

x+xyzzxyz=f(y)x+xyz-z-xyz=f(y)

xz=f(y)x-z=f(y)

Use the equation

(1+yz)dx+f(y)dy(1+xy)dz=0(1+yz)dx+f' (y)dy-(1+xy)dz=0

f(y)=x(zx)f' (y)=x(z-x)

f(y)=f(y)xf' (y)=-f(y)x

ln⁡〖f(y)=xy+Cln⁡〖f(y)〗=-xy+C

f(y)=exp(xy+C)f(y)=exp(-xy+C)

Answer: xz=exp(xy+C)x-z=exp(-xy+C)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS