Necessary and sufficient condition for the total differential equation Pdx+Qdy+Rdz=0
to be integrable is P(∂R/∂y−∂Q/∂z)−Q(∂R/∂x−∂P/∂z)++R(∂Q/∂x−∂P/∂y)=0
P=1+yz
∂P/∂z=y
∂P/∂y=z
Q=x(z−x)
∂Q/∂x=z−2x
∂Q/∂z=x
R=−(1+xy)
∂R/∂x=−y
∂R/∂y=−x
According to the given equation
(1+yz)(−x−x)−x(z−x)(−y−y)+(−1−xy)(z−2x−z)==−2x−2xyz+2xyz−2x2y+2x+2x2y=0
So it is integrable.
Let y=const
(1+yz)dx−(1+xy)dz=0
Integrate
x+xyz−z−xyz=f(y)
x−z=f(y)
Use the equation
(1+yz)dx+f′(y)dy−(1+xy)dz=0
f′(y)=x(z−x)
f′(y)=−f(y)x
ln〖f(y)〗=−xy+C
f(y)=exp(−xy+C)
Answer: x−z=exp(−xy+C)
Comments