Question #158607

x2Uxx-xyUxy+y2Uyy-xUx+yUy=8y/x (x≠0,y≠0) find the general solution.


1
Expert's answer
2021-02-16T05:55:45-0500

ξ=ξ(x,y),η=η(x,y)\xi=\xi(x,y),\eta=\eta(x,y)

w(ξ,η)=u(x(ξ,η),y(ξ,η))    u(x,y)=w(ξ(x,y),η(x,y))w(\xi,\eta)=u(x(\xi,\eta),y(\xi,\eta))\implies u(x,y)=w(\xi(x,y),\eta(x,y))

awξξ+bwξη+cwηη=φ(ξ,η,w,wξ,wη)aw_{\xi\xi}+bw_{\xi\eta}+cw_{\eta\eta}=\varphi(\xi,\eta,w,w_{\xi},w_{\eta})

A=x2,B=xy,C=y2A=x^2,B=-xy,C=y^2

B24AC=x2y24x2y2=3x2y2<0B^2-4AC=x^2y^2-4x^2y^2=-3x^2y^2<0

This is an elliptic equation.

The roots of the characteristic polynomial:

λ1=Bi4ACB22A=xyi4x2y2x2y22x2=y(1+i3)2x\lambda_1=\frac{B-i\sqrt{4AC-B^2}}{2A}=\frac{-xy-i\sqrt{4x^2y^2-x^2y^2}}{2x^2}=-\frac{y(1+i\sqrt{3})}{2x}

λ2=B+i4ACB22A=y(1i3)2x\lambda_2=\frac{B+i\sqrt{4AC-B^2}}{2A}=-\frac{y(1-i\sqrt{3})}{2x}


dydx=y(1+i3)2x    lny=1+i32lnx+lnc1\frac{dy}{dx}=-\frac{y(1+i\sqrt{3})}{2x}\implies lny=-\frac{1+i\sqrt{3}}{2}lnx+lnc_1


c1=yx(1+i3)/2=αc_1=yx^{(1+i\sqrt{3})/2}=\alpha


dydx=y(1i3)2x\frac{dy}{dx}=-\frac{y(1-i\sqrt{3})}{2x}


c2=yx(1i3)/2=βc_2=yx^{(1-i\sqrt{3})/2}=\beta


ξ=α+β2=yxcos(3lnx/2)\xi=\frac{\alpha+\beta}{2}=y\sqrt{x}cos(\sqrt{3}lnx/2)


η=αβ2i=yxsin(3lnx/2)\eta=\frac{\alpha-\beta}{2i}=y\sqrt{x}sin(\sqrt{3}lnx/2)


ξx=y2x(cos(3lnx/2)3sin(3lnx/2))\xi_x=\frac{y}{2\sqrt{x}}(cos(\sqrt{3}lnx/2)-\sqrt{3}sin(\sqrt{3}lnx/2))


ηx=y2x(sin(3lnx/2)+3cos(3lnx/2))\eta_x=\frac{y}{2\sqrt{x}}(sin(\sqrt{3}lnx/2)+\sqrt{3}cos(\sqrt{3}lnx/2))


ξy=xcos(3lnx/2)\xi_y=\sqrt{x}cos(\sqrt{3}lnx/2)


ηy=xsin(3lnx/2)\eta_y=\sqrt{x}sin(\sqrt{3}lnx/2)


ξxx=y4x3/2(cos(3lnx/2)3sin(3lnx/2))+\xi_{xx}=-\frac{y}{4x^{3/2}}(cos(\sqrt{3}lnx/2)-\sqrt{3}sin(\sqrt{3}lnx/2))+

+y34x3/2(sin(3lnx/2)3cos(3lnx/2))=+\frac{y\sqrt{3}}{4x^{3/2}}(-sin(\sqrt{3}lnx/2)-\sqrt{3}cos(\sqrt{3}lnx/2))=

=y2x3/2(cos(3lnx/2)+3sin(3lnx/2))=\frac{y}{2x^{3/2}}(cos(\sqrt{3}lnx/2)+\sqrt{3}sin(\sqrt{3}lnx/2))


ηxx=y2x3/2(3cos(3lnx/2)sin(3lnx/2))\eta_{xx}=\frac{y}{2x^{3/2}}(\sqrt{3}cos(\sqrt{3}lnx/2)-sin(\sqrt{3}lnx/2))


ξyy=ηyy=0\xi_{yy}=\eta_{yy}=0


ξxy=12x(cos(3lnx/2)3sin(3lnx/2))\xi_{xy}=\frac{1}{2\sqrt{x}}(cos(\sqrt{3}lnx/2)-\sqrt{3}sin(\sqrt{3}lnx/2))


ηxy=12x(sin(3lnx/2)+3cos(3lnx/2))\eta_{xy}=\frac{1}{2\sqrt{x}}(sin(\sqrt{3}lnx/2)+\sqrt{3}cos(\sqrt{3}lnx/2))


Let: k=cos(3lnx/2),m=sin(3lnx/2)k=cos(\sqrt{3}lnx/2), m=sin(\sqrt{3}lnx/2)


ux=wξξx+wηηxu_x=w_{\xi}\xi_x+w_{\eta}\eta_x

ux=y2x(km3)wξ+y2x(m+k3)wηu_x=\frac{y}{2\sqrt{x}}(k-m\sqrt{3})w_{\xi}+\frac{y}{2\sqrt{x}}(m+k\sqrt{3})w_{\eta}


uy=wξξy+wηηyu_y=w_{\xi}\xi_y+w_{\eta}\eta_y

uy=kxwξ+mxwηu_y=k\sqrt{x}w_{\xi}+m\sqrt{x}w_{\eta}


uxx=wξξξx2+2wξηξxηx+wηηηx2+wξξxx+wηηxxu_{xx}=w_{\xi\xi}\xi^2_x+2w_{\xi\eta}\xi_x\eta_x+w_{\eta\eta}\eta^2_x+w_{\xi}\xi_{xx}+w_{\eta}\eta_{xx}

uxx=y24x(km3)2wξξ+y22x(km3)(m+k3)wξη+u_{xx}=\frac{y^2}{4x}(k-m\sqrt{3})^2w_{\xi\xi}+\frac{y^2}{2x}(k-m\sqrt{3})(m+k\sqrt{3})w_{\xi\eta}+

+y24x(m+k3)2wηη+y2x3/2(k+m3)wξ+y2x3/2(k3m)wη+\frac{y^2}{4x}(m+k\sqrt{3})^2w_{\eta\eta}+\frac{y}{2x^{3/2}}(k+m\sqrt{3})w_{\xi}+\frac{y}{2x^{3/2}}(k\sqrt{3}-m)w_{\eta}


uyy=wξξξy2+2wξηξyηy+wηηηy2+wξξyy+wηηyyu_{yy}=w_{\xi\xi}\xi^2_y+2w_{\xi\eta}\xi_y\eta_y+w_{\eta\eta}\eta^2_y+w_{\xi}\xi_{yy}+w_{\eta}\eta_{yy}

uyy=xk2wξξ+2xkmwξη+xm2wηηu_{yy}=xk^2w_{\xi\xi}+2xkmw_{\xi\eta}+xm^2w_{\eta\eta}


uxy=wξξξxξy+wξη(ξxηy+ξyηx)+wηηηxηy+wξξxy+wηηxyu_{xy}=w_{\xi\xi}\xi_x\xi_y+w_{\xi\eta}(\xi_x\eta_y+\xi_y\eta_x)+w_{\eta\eta}\eta_x\eta_y+w_{\xi}\xi_{xy}+w_{\eta}\eta_{xy}

uxy=y2k(km3)wξξ+y2(m(km3)+k(m+k3))wξη+u_{xy}=\frac{y}{2}k(k-m\sqrt{3})w_{\xi\xi}+\frac{y}{2}(m(k-m\sqrt{3})+k(m+k\sqrt{3}))w_{\xi\eta}+

+y2m(m+k3)wηη+12x(km3)wξ+12x(m+k3)wη+\frac{y}{2}m(m+k\sqrt{3})w_{\eta\eta}+\frac{1}{2\sqrt{x}}(k-m\sqrt{3})w_{\xi}+\frac{1}{2\sqrt{x}}(m+k\sqrt{3})w_{\eta}


Substituting the give values into the initial equation:


34xy2(wξξ+wηη)=8yxymx(wξ3wη)\frac{3}{4}xy^2(w_{\xi\xi}+w_{\eta\eta})=\frac{8y}{x}-ym\sqrt{x}(w_{\xi}\sqrt{3}-w_{\eta})


We also have:


ξ2+η2=xy2\xi^2+\eta^2=xy^2


x=e2tan1(η/ξ)/3x=e^{2tan^{-1}(\eta/\xi)/\sqrt{3}}


yx=ξ2+η2etan1(η/ξ)/3\frac{y}{x}=\frac{\sqrt{\xi^2+\eta^2}}{e^{tan^{-1}(\eta/\xi)/\sqrt{3}}}


So, canonical form of equation:


wξξ+wηη=323etan1(η/ξ)/3ξ2+η24η3(ξ2+η2)(wξ3wη)w_{\xi\xi}+w_{\eta\eta}=\frac{32}{3e^{tan^{-1}(\eta/\xi)/\sqrt{3}}\sqrt{\xi^2+\eta^2}}-\frac{4\eta}{3(\xi^2+\eta^2)}(w_{\xi}\sqrt{3}-w_{\eta})



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
09.02.21, 00:02

Dear Luna, thank you for correcting us.

Luna
04.02.21, 18:00

The discriminant formula isn't (b^2)-4ac? Because if we did it like that the discriminant would be -3(x^2)(y^2). I don't get that

LATEST TUTORIALS
APPROVED BY CLIENTS