ξ=ξ(x,y),η=η(x,y)
w(ξ,η)=u(x(ξ,η),y(ξ,η))⟹u(x,y)=w(ξ(x,y),η(x,y))
awξξ+bwξη+cwηη=φ(ξ,η,w,wξ,wη)
A=x2,B=−xy,C=y2
B2−4AC=x2y2−4x2y2=−3x2y2<0
This is an elliptic equation.
The roots of the characteristic polynomial:
λ1=2AB−i4AC−B2=2x2−xy−i4x2y2−x2y2=−2xy(1+i3)
λ2=2AB+i4AC−B2=−2xy(1−i3)
dxdy=−2xy(1+i3)⟹lny=−21+i3lnx+lnc1
c1=yx(1+i3)/2=α
dxdy=−2xy(1−i3)
c2=yx(1−i3)/2=β
ξ=2α+β=yxcos(3lnx/2)
η=2iα−β=yxsin(3lnx/2)
ξx=2xy(cos(3lnx/2)−3sin(3lnx/2))
ηx=2xy(sin(3lnx/2)+3cos(3lnx/2))
ξy=xcos(3lnx/2)
ηy=xsin(3lnx/2)
ξxx=−4x3/2y(cos(3lnx/2)−3sin(3lnx/2))+
+4x3/2y3(−sin(3lnx/2)−3cos(3lnx/2))=
=2x3/2y(cos(3lnx/2)+3sin(3lnx/2))
ηxx=2x3/2y(3cos(3lnx/2)−sin(3lnx/2))
ξyy=ηyy=0
ξxy=2x1(cos(3lnx/2)−3sin(3lnx/2))
ηxy=2x1(sin(3lnx/2)+3cos(3lnx/2))
Let: k=cos(3lnx/2),m=sin(3lnx/2)
ux=wξξx+wηηx
ux=2xy(k−m3)wξ+2xy(m+k3)wη
uy=wξξy+wηηy
uy=kxwξ+mxwη
uxx=wξξξx2+2wξηξxηx+wηηηx2+wξξxx+wηηxx
uxx=4xy2(k−m3)2wξξ+2xy2(k−m3)(m+k3)wξη+
+4xy2(m+k3)2wηη+2x3/2y(k+m3)wξ+2x3/2y(k3−m)wη
uyy=wξξξy2+2wξηξyηy+wηηηy2+wξξyy+wηηyy
uyy=xk2wξξ+2xkmwξη+xm2wηη
uxy=wξξξxξy+wξη(ξxηy+ξyηx)+wηηηxηy+wξξxy+wηηxy
uxy=2yk(k−m3)wξξ+2y(m(k−m3)+k(m+k3))wξη+
+2ym(m+k3)wηη+2x1(k−m3)wξ+2x1(m+k3)wη
Substituting the give values into the initial equation:
43xy2(wξξ+wηη)=x8y−ymx(wξ3−wη)
We also have:
ξ2+η2=xy2
x=e2tan−1(η/ξ)/3
xy=etan−1(η/ξ)/3ξ2+η2
So, canonical form of equation:
wξξ+wηη=3etan−1(η/ξ)/3ξ2+η232−3(ξ2+η2)4η(wξ3−wη)
Comments
Dear Luna, thank you for correcting us.
The discriminant formula isn't (b^2)-4ac? Because if we did it like that the discriminant would be -3(x^2)(y^2). I don't get that