ξ = ξ ( x , y ) , η = η ( x , y ) \xi=\xi(x,y),\eta=\eta(x,y) ξ = ξ ( x , y ) , η = η ( x , y )
w ( ξ , η ) = u ( x ( ξ , η ) , y ( ξ , η ) ) ⟹ u ( x , y ) = w ( ξ ( x , y ) , η ( x , y ) ) w(\xi,\eta)=u(x(\xi,\eta),y(\xi,\eta))\implies u(x,y)=w(\xi(x,y),\eta(x,y)) w ( ξ , η ) = u ( x ( ξ , η ) , y ( ξ , η )) ⟹ u ( x , y ) = w ( ξ ( x , y ) , η ( x , y ))
a w ξ ξ + b w ξ η + c w η η = φ ( ξ , η , w , w ξ , w η ) aw_{\xi\xi}+bw_{\xi\eta}+cw_{\eta\eta}=\varphi(\xi,\eta,w,w_{\xi},w_{\eta}) a w ξξ + b w ξ η + c w ηη = φ ( ξ , η , w , w ξ , w η )
A = x 2 , B = − x y , C = y 2 A=x^2,B=-xy,C=y^2 A = x 2 , B = − x y , C = y 2
B 2 − 4 A C = x 2 y 2 − 4 x 2 y 2 = − 3 x 2 y 2 < 0 B^2-4AC=x^2y^2-4x^2y^2=-3x^2y^2<0 B 2 − 4 A C = x 2 y 2 − 4 x 2 y 2 = − 3 x 2 y 2 < 0
This is an elliptic equation.
The roots of the characteristic polynomial:
λ 1 = B − i 4 A C − B 2 2 A = − x y − i 4 x 2 y 2 − x 2 y 2 2 x 2 = − y ( 1 + i 3 ) 2 x \lambda_1=\frac{B-i\sqrt{4AC-B^2}}{2A}=\frac{-xy-i\sqrt{4x^2y^2-x^2y^2}}{2x^2}=-\frac{y(1+i\sqrt{3})}{2x} λ 1 = 2 A B − i 4 A C − B 2 = 2 x 2 − x y − i 4 x 2 y 2 − x 2 y 2 = − 2 x y ( 1 + i 3 )
λ 2 = B + i 4 A C − B 2 2 A = − y ( 1 − i 3 ) 2 x \lambda_2=\frac{B+i\sqrt{4AC-B^2}}{2A}=-\frac{y(1-i\sqrt{3})}{2x} λ 2 = 2 A B + i 4 A C − B 2 = − 2 x y ( 1 − i 3 )
d y d x = − y ( 1 + i 3 ) 2 x ⟹ l n y = − 1 + i 3 2 l n x + l n c 1 \frac{dy}{dx}=-\frac{y(1+i\sqrt{3})}{2x}\implies lny=-\frac{1+i\sqrt{3}}{2}lnx+lnc_1 d x d y = − 2 x y ( 1 + i 3 ) ⟹ l n y = − 2 1 + i 3 l n x + l n c 1
c 1 = y x ( 1 + i 3 ) / 2 = α c_1=yx^{(1+i\sqrt{3})/2}=\alpha c 1 = y x ( 1 + i 3 ) /2 = α
d y d x = − y ( 1 − i 3 ) 2 x \frac{dy}{dx}=-\frac{y(1-i\sqrt{3})}{2x} d x d y = − 2 x y ( 1 − i 3 )
c 2 = y x ( 1 − i 3 ) / 2 = β c_2=yx^{(1-i\sqrt{3})/2}=\beta c 2 = y x ( 1 − i 3 ) /2 = β
ξ = α + β 2 = y x c o s ( 3 l n x / 2 ) \xi=\frac{\alpha+\beta}{2}=y\sqrt{x}cos(\sqrt{3}lnx/2) ξ = 2 α + β = y x cos ( 3 l n x /2 )
η = α − β 2 i = y x s i n ( 3 l n x / 2 ) \eta=\frac{\alpha-\beta}{2i}=y\sqrt{x}sin(\sqrt{3}lnx/2) η = 2 i α − β = y x s in ( 3 l n x /2 )
ξ x = y 2 x ( c o s ( 3 l n x / 2 ) − 3 s i n ( 3 l n x / 2 ) ) \xi_x=\frac{y}{2\sqrt{x}}(cos(\sqrt{3}lnx/2)-\sqrt{3}sin(\sqrt{3}lnx/2)) ξ x = 2 x y ( cos ( 3 l n x /2 ) − 3 s in ( 3 l n x /2 ))
η x = y 2 x ( s i n ( 3 l n x / 2 ) + 3 c o s ( 3 l n x / 2 ) ) \eta_x=\frac{y}{2\sqrt{x}}(sin(\sqrt{3}lnx/2)+\sqrt{3}cos(\sqrt{3}lnx/2)) η x = 2 x y ( s in ( 3 l n x /2 ) + 3 cos ( 3 l n x /2 ))
ξ y = x c o s ( 3 l n x / 2 ) \xi_y=\sqrt{x}cos(\sqrt{3}lnx/2) ξ y = x cos ( 3 l n x /2 )
η y = x s i n ( 3 l n x / 2 ) \eta_y=\sqrt{x}sin(\sqrt{3}lnx/2) η y = x s in ( 3 l n x /2 )
ξ x x = − y 4 x 3 / 2 ( c o s ( 3 l n x / 2 ) − 3 s i n ( 3 l n x / 2 ) ) + \xi_{xx}=-\frac{y}{4x^{3/2}}(cos(\sqrt{3}lnx/2)-\sqrt{3}sin(\sqrt{3}lnx/2))+ ξ xx = − 4 x 3/2 y ( cos ( 3 l n x /2 ) − 3 s in ( 3 l n x /2 )) +
+ y 3 4 x 3 / 2 ( − s i n ( 3 l n x / 2 ) − 3 c o s ( 3 l n x / 2 ) ) = +\frac{y\sqrt{3}}{4x^{3/2}}(-sin(\sqrt{3}lnx/2)-\sqrt{3}cos(\sqrt{3}lnx/2))= + 4 x 3/2 y 3 ( − s in ( 3 l n x /2 ) − 3 cos ( 3 l n x /2 )) =
= y 2 x 3 / 2 ( c o s ( 3 l n x / 2 ) + 3 s i n ( 3 l n x / 2 ) ) =\frac{y}{2x^{3/2}}(cos(\sqrt{3}lnx/2)+\sqrt{3}sin(\sqrt{3}lnx/2)) = 2 x 3/2 y ( cos ( 3 l n x /2 ) + 3 s in ( 3 l n x /2 ))
η x x = y 2 x 3 / 2 ( 3 c o s ( 3 l n x / 2 ) − s i n ( 3 l n x / 2 ) ) \eta_{xx}=\frac{y}{2x^{3/2}}(\sqrt{3}cos(\sqrt{3}lnx/2)-sin(\sqrt{3}lnx/2)) η xx = 2 x 3/2 y ( 3 cos ( 3 l n x /2 ) − s in ( 3 l n x /2 ))
ξ y y = η y y = 0 \xi_{yy}=\eta_{yy}=0 ξ yy = η yy = 0
ξ x y = 1 2 x ( c o s ( 3 l n x / 2 ) − 3 s i n ( 3 l n x / 2 ) ) \xi_{xy}=\frac{1}{2\sqrt{x}}(cos(\sqrt{3}lnx/2)-\sqrt{3}sin(\sqrt{3}lnx/2)) ξ x y = 2 x 1 ( cos ( 3 l n x /2 ) − 3 s in ( 3 l n x /2 ))
η x y = 1 2 x ( s i n ( 3 l n x / 2 ) + 3 c o s ( 3 l n x / 2 ) ) \eta_{xy}=\frac{1}{2\sqrt{x}}(sin(\sqrt{3}lnx/2)+\sqrt{3}cos(\sqrt{3}lnx/2)) η x y = 2 x 1 ( s in ( 3 l n x /2 ) + 3 cos ( 3 l n x /2 ))
Let: k = c o s ( 3 l n x / 2 ) , m = s i n ( 3 l n x / 2 ) k=cos(\sqrt{3}lnx/2), m=sin(\sqrt{3}lnx/2) k = cos ( 3 l n x /2 ) , m = s in ( 3 l n x /2 )
u x = w ξ ξ x + w η η x u_x=w_{\xi}\xi_x+w_{\eta}\eta_x u x = w ξ ξ x + w η η x
u x = y 2 x ( k − m 3 ) w ξ + y 2 x ( m + k 3 ) w η u_x=\frac{y}{2\sqrt{x}}(k-m\sqrt{3})w_{\xi}+\frac{y}{2\sqrt{x}}(m+k\sqrt{3})w_{\eta} u x = 2 x y ( k − m 3 ) w ξ + 2 x y ( m + k 3 ) w η
u y = w ξ ξ y + w η η y u_y=w_{\xi}\xi_y+w_{\eta}\eta_y u y = w ξ ξ y + w η η y
u y = k x w ξ + m x w η u_y=k\sqrt{x}w_{\xi}+m\sqrt{x}w_{\eta} u y = k x w ξ + m x w η
u x x = w ξ ξ ξ x 2 + 2 w ξ η ξ x η x + w η η η x 2 + w ξ ξ x x + w η η x x u_{xx}=w_{\xi\xi}\xi^2_x+2w_{\xi\eta}\xi_x\eta_x+w_{\eta\eta}\eta^2_x+w_{\xi}\xi_{xx}+w_{\eta}\eta_{xx} u xx = w ξξ ξ x 2 + 2 w ξ η ξ x η x + w ηη η x 2 + w ξ ξ xx + w η η xx
u x x = y 2 4 x ( k − m 3 ) 2 w ξ ξ + y 2 2 x ( k − m 3 ) ( m + k 3 ) w ξ η + u_{xx}=\frac{y^2}{4x}(k-m\sqrt{3})^2w_{\xi\xi}+\frac{y^2}{2x}(k-m\sqrt{3})(m+k\sqrt{3})w_{\xi\eta}+ u xx = 4 x y 2 ( k − m 3 ) 2 w ξξ + 2 x y 2 ( k − m 3 ) ( m + k 3 ) w ξ η +
+ y 2 4 x ( m + k 3 ) 2 w η η + y 2 x 3 / 2 ( k + m 3 ) w ξ + y 2 x 3 / 2 ( k 3 − m ) w η +\frac{y^2}{4x}(m+k\sqrt{3})^2w_{\eta\eta}+\frac{y}{2x^{3/2}}(k+m\sqrt{3})w_{\xi}+\frac{y}{2x^{3/2}}(k\sqrt{3}-m)w_{\eta} + 4 x y 2 ( m + k 3 ) 2 w ηη + 2 x 3/2 y ( k + m 3 ) w ξ + 2 x 3/2 y ( k 3 − m ) w η
u y y = w ξ ξ ξ y 2 + 2 w ξ η ξ y η y + w η η η y 2 + w ξ ξ y y + w η η y y u_{yy}=w_{\xi\xi}\xi^2_y+2w_{\xi\eta}\xi_y\eta_y+w_{\eta\eta}\eta^2_y+w_{\xi}\xi_{yy}+w_{\eta}\eta_{yy} u yy = w ξξ ξ y 2 + 2 w ξ η ξ y η y + w ηη η y 2 + w ξ ξ yy + w η η yy
u y y = x k 2 w ξ ξ + 2 x k m w ξ η + x m 2 w η η u_{yy}=xk^2w_{\xi\xi}+2xkmw_{\xi\eta}+xm^2w_{\eta\eta} u yy = x k 2 w ξξ + 2 x km w ξ η + x m 2 w ηη
u x y = w ξ ξ ξ x ξ y + w ξ η ( ξ x η y + ξ y η x ) + w η η η x η y + w ξ ξ x y + w η η x y u_{xy}=w_{\xi\xi}\xi_x\xi_y+w_{\xi\eta}(\xi_x\eta_y+\xi_y\eta_x)+w_{\eta\eta}\eta_x\eta_y+w_{\xi}\xi_{xy}+w_{\eta}\eta_{xy} u x y = w ξξ ξ x ξ y + w ξ η ( ξ x η y + ξ y η x ) + w ηη η x η y + w ξ ξ x y + w η η x y
u x y = y 2 k ( k − m 3 ) w ξ ξ + y 2 ( m ( k − m 3 ) + k ( m + k 3 ) ) w ξ η + u_{xy}=\frac{y}{2}k(k-m\sqrt{3})w_{\xi\xi}+\frac{y}{2}(m(k-m\sqrt{3})+k(m+k\sqrt{3}))w_{\xi\eta}+ u x y = 2 y k ( k − m 3 ) w ξξ + 2 y ( m ( k − m 3 ) + k ( m + k 3 )) w ξ η +
+ y 2 m ( m + k 3 ) w η η + 1 2 x ( k − m 3 ) w ξ + 1 2 x ( m + k 3 ) w η +\frac{y}{2}m(m+k\sqrt{3})w_{\eta\eta}+\frac{1}{2\sqrt{x}}(k-m\sqrt{3})w_{\xi}+\frac{1}{2\sqrt{x}}(m+k\sqrt{3})w_{\eta} + 2 y m ( m + k 3 ) w ηη + 2 x 1 ( k − m 3 ) w ξ + 2 x 1 ( m + k 3 ) w η
Substituting the give values into the initial equation:
3 4 x y 2 ( w ξ ξ + w η η ) = 8 y x − y m x ( w ξ 3 − w η ) \frac{3}{4}xy^2(w_{\xi\xi}+w_{\eta\eta})=\frac{8y}{x}-ym\sqrt{x}(w_{\xi}\sqrt{3}-w_{\eta}) 4 3 x y 2 ( w ξξ + w ηη ) = x 8 y − y m x ( w ξ 3 − w η )
We also have:
ξ 2 + η 2 = x y 2 \xi^2+\eta^2=xy^2 ξ 2 + η 2 = x y 2
x = e 2 t a n − 1 ( η / ξ ) / 3 x=e^{2tan^{-1}(\eta/\xi)/\sqrt{3}} x = e 2 t a n − 1 ( η / ξ ) / 3
y x = ξ 2 + η 2 e t a n − 1 ( η / ξ ) / 3 \frac{y}{x}=\frac{\sqrt{\xi^2+\eta^2}}{e^{tan^{-1}(\eta/\xi)/\sqrt{3}}} x y = e t a n − 1 ( η / ξ ) / 3 ξ 2 + η 2
So, canonical form of equation:
w ξ ξ + w η η = 32 3 e t a n − 1 ( η / ξ ) / 3 ξ 2 + η 2 − 4 η 3 ( ξ 2 + η 2 ) ( w ξ 3 − w η ) w_{\xi\xi}+w_{\eta\eta}=\frac{32}{3e^{tan^{-1}(\eta/\xi)/\sqrt{3}}\sqrt{\xi^2+\eta^2}}-\frac{4\eta}{3(\xi^2+\eta^2)}(w_{\xi}\sqrt{3}-w_{\eta}) w ξξ + w ηη = 3 e t a n − 1 ( η / ξ ) / 3 ξ 2 + η 2 32 − 3 ( ξ 2 + η 2 ) 4 η ( w ξ 3 − w η )
Comments
Dear Luna, thank you for correcting us.
The discriminant formula isn't (b^2)-4ac? Because if we did it like that the discriminant would be -3(x^2)(y^2). I don't get that