Uxx+3Uxy-4Uyy+Ux+4Uy=0 find the canonical form and solve the equation. (general solution)
The characteristic quadratic form of this equation has the form
"Q( \\lambda_1 , \\lambda_2)=\\lambda^2_1 +3 \\lambda_1 \\lambda_2-4 \\lambda_2^2"
Let's bring it to its canonical form:
"\\lambda^2_1 +3 \\lambda_1 \\lambda_2-4 \\lambda_2^2=(\\lambda_1+3\/2 \\lambda_2)^2-( \\sqrt{11\/2} \\lambda_2)^2= k_1^2-k_2^2"
Where
"k1= \\lambda_1+3\/2 \\lambda_2"
"k_2= \\sqrt{11\/2} \\lambda_2"
So
"\\begin{pmatrix}\n k_1 \\\\\n k_2 \n\\end{pmatrix} =\\begin{pmatrix}\n 1 & 3\/2\\\\\n 0 & \\sqrt{11\/2}\n\\end{pmatrix}\\begin{pmatrix}\n \\lambda_1 \\\\\n \\lambda_2\n\\end{pmatrix}"
Find the number replacement matrix
"( \\begin{pmatrix}\n 1 & 3\/2\\\\\n 0 & \\sqrt{11\/2}\n\\end{pmatrix}^T)^{-1}=\\begin{pmatrix}\n 1 & 0 \\\\\n -30\/47 & 20\/47\n\\end{pmatrix}"
We replace the number:
"\\begin{pmatrix}\n a \\\\\n b\n\\end{pmatrix}=\\begin{pmatrix}\n 1 & 0 \\\\\n -30\/47 & 20\/47\n\\end{pmatrix}\\begin{pmatrix}\n x\\\\\n y\n\\end{pmatrix}"
a=x
b=(-30x+20y)/47
To substitute new variables in the original equation, we put
V(a,b)=u(x,y)
ux=va-(30/47)vb
uy=20/47 vb
uxx=vaa-(60/47)vab+900/2209vbb
uxy=(60/47)vab-1800/2209vbb
uyy=400/2209vbb
vaa-(60/47)vab+900/2209vbb+(180/47)vab-5400/2209vbb -1600/2209vbb +va-(30/47)vb+800/47 vb =vaa+(120/47)vab-6100/2209vbb + va+770/47vb=0
Answer: vaa+(120/47)vab-6100/2209vbb + va+770/47vb=0
hyperbolic type
General solution:
V(a,b)=f1(a)+f2(b)
u(x,y)=f1(x)+f2((-30x+20y)/47)
Comments
Dear Merve รetin, we do our best to solve a question as soon as possible. You also may try to submit an order if some requirements concerning a solution of the question are required.
Can you solve it very urgently?
Leave a comment