The characteristic quadratic form of this equation has the form
Q ( λ 1 , λ 2 ) = λ 1 2 + 3 λ 1 λ 2 − 4 λ 2 2 Q( \lambda_1 , \lambda_2)=\lambda^2_1 +3 \lambda_1 \lambda_2-4 \lambda_2^2 Q ( λ 1 , λ 2 ) = λ 1 2 + 3 λ 1 λ 2 − 4 λ 2 2
Let's bring it to its canonical form:λ 1 2 + 3 λ 1 λ 2 − 4 λ 2 2 = ( λ 1 + 3 / 2 λ 2 ) 2 − ( 11 / 2 λ 2 ) 2 = k 1 2 − k 2 2 \lambda^2_1 +3 \lambda_1 \lambda_2-4 \lambda_2^2=(\lambda_1+3/2 \lambda_2)^2-( \sqrt{11/2} \lambda_2)^2= k_1^2-k_2^2 λ 1 2 + 3 λ 1 λ 2 − 4 λ 2 2 = ( λ 1 + 3/2 λ 2 ) 2 − ( 11/2 λ 2 ) 2 = k 1 2 − k 2 2
Where
k 1 = λ 1 + 3 / 2 λ 2 k1= \lambda_1+3/2 \lambda_2 k 1 = λ 1 + 3/2 λ 2
k 2 = 11 / 2 λ 2 k_2= \sqrt{11/2} \lambda_2 k 2 = 11/2 λ 2
So
( k 1 k 2 ) = ( 1 3 / 2 0 11 / 2 ) ( λ 1 λ 2 ) \begin{pmatrix}
k_1 \\
k_2
\end{pmatrix} =\begin{pmatrix}
1 & 3/2\\
0 & \sqrt{11/2}
\end{pmatrix}\begin{pmatrix}
\lambda_1 \\
\lambda_2
\end{pmatrix} ( k 1 k 2 ) = ( 1 0 3/2 11/2 ) ( λ 1 λ 2 )
Find the number replacement matrix
( ( 1 3 / 2 0 11 / 2 ) T ) − 1 = ( 1 0 − 30 / 47 20 / 47 ) ( \begin{pmatrix}
1 & 3/2\\
0 & \sqrt{11/2}
\end{pmatrix}^T)^{-1}=\begin{pmatrix}
1 & 0 \\
-30/47 & 20/47
\end{pmatrix} ( ( 1 0 3/2 11/2 ) T ) − 1 = ( 1 − 30/47 0 20/47 )
We replace the number:
( a b ) = ( 1 0 − 30 / 47 20 / 47 ) ( x y ) \begin{pmatrix}
a \\
b
\end{pmatrix}=\begin{pmatrix}
1 & 0 \\
-30/47 & 20/47
\end{pmatrix}\begin{pmatrix}
x\\
y
\end{pmatrix} ( a b ) = ( 1 − 30/47 0 20/47 ) ( x y )
a=x
b=(-30x+20y)/47
To substitute new variables in the original equation, we put
V(a,b)=u(x,y)
ux =va -(30/47)vb
uy =20/47 vb
uxx =vaa -(60/47)vab +900/2209vbb
uxy =(60/47)vab -1800/2209vbb
uyy =400/2209vbb
vaa -(60/47)vab +900/2209vbb +(180/47)vab -5400/2209vbb -1600/2209vbb +va -(30/47)vb +800/47 vb =vaa +(120/47)vab -6100/2209vbb + va +770/47vb =0
Answer: vaa +(120/47)vab -6100/2209vbb + va +770/47vb =0
hyperbolic type
General solution:
V(a,b)=f1(a)+f2(b)
u(x,y)=f1(x)+f2((-30x+20y)/47)
Comments
Dear Merve Çetin, we do our best to solve a question as soon as possible. You also may try to submit an order if some requirements concerning a solution of the question are required.
Can you solve it very urgently?