Question #158327

Uxx+3Uxy-4Uyy+Ux+4Uy=0 find the canonical form and solve the equation. (general solution)


1
Expert's answer
2021-02-01T16:47:14-0500

The characteristic quadratic form of this equation has the form

Q(λ1,λ2)=λ12+3λ1λ24λ22Q( \lambda_1 , \lambda_2)=\lambda^2_1 +3 \lambda_1 \lambda_2-4 \lambda_2^2

Let's bring it to its canonical form:

λ12+3λ1λ24λ22=(λ1+3/2λ2)2(11/2λ2)2=k12k22\lambda^2_1 +3 \lambda_1 \lambda_2-4 \lambda_2^2=(\lambda_1+3/2 \lambda_2)^2-( \sqrt{11/2} \lambda_2)^2= k_1^2-k_2^2

Where

k1=λ1+3/2λ2k1= \lambda_1+3/2 \lambda_2

k2=11/2λ2k_2= \sqrt{11/2} \lambda_2

So

(k1k2)=(13/2011/2)(λ1λ2)\begin{pmatrix} k_1 \\ k_2 \end{pmatrix} =\begin{pmatrix} 1 & 3/2\\ 0 & \sqrt{11/2} \end{pmatrix}\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}

Find the number replacement matrix

((13/2011/2)T)1=(1030/4720/47)( \begin{pmatrix} 1 & 3/2\\ 0 & \sqrt{11/2} \end{pmatrix}^T)^{-1}=\begin{pmatrix} 1 & 0 \\ -30/47 & 20/47 \end{pmatrix}


We replace the number:

(ab)=(1030/4720/47)(xy)\begin{pmatrix} a \\ b \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ -30/47 & 20/47 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}

a=x

b=(-30x+20y)/47

To substitute new variables in the original equation, we put


V(a,b)=u(x,y)

ux=va-(30/47)vb

uy=20/47 vb

uxx=vaa-(60/47)vab+900/2209vbb

uxy=(60/47)vab-1800/2209vbb

uyy=400/2209vbb


vaa-(60/47)vab+900/2209vbb+(180/47)vab-5400/2209vbb -1600/2209vbb +va-(30/47)vb+800/47 vb =vaa+(120/47)vab-6100/2209vbb + va+770/47vb=0


Answer: vaa+(120/47)vab-6100/2209vbb + va+770/47vb=0

hyperbolic type


General solution:

V(a,b)=f1(a)+f2(b)

u(x,y)=f1(x)+f2((-30x+20y)/47)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
01.02.21, 23:54

Dear Merve Çetin, we do our best to solve a question as soon as possible. You also may try to submit an order if some requirements concerning a solution of the question are required.

Merve Çetin
30.01.21, 17:28

Can you solve it very urgently?

LATEST TUTORIALS
APPROVED BY CLIENTS