Solve the differential equations using separating variables.
1. Cosy + ( 1+ e raise to power of -x ) siny dy/dx equal zero. Given that y= π/4 when x=0.
2. X raise to power of 2 ( y +1 ) + y raise to power of 2 ( x - 1 ) dy/dx equal zero.
Solution:
1. cosy+(1+e−x)sinydxdy=0
cosy=−(1+e−x)sinydxdy
1+e−xdx=−cosysinydy
∫1+e−xdx=−∫cosysinydy
∫1+exexdx=∫cosydcosy
∫1+exd(ex+1)=∫cosydcosy
ln(ex+1)+lnC=lncosy
cosy=C(ex+1)
cos4π=C(e0+1)
21=C⋅2
C=221=42
cosy=42(ex+1) .
2. x2(y+1)+y2(x−1)dxdy=0
x2(y+1)=−y2(x−1)dxdy
x−1x2dx=−y+1y2dy
∫x−1(x−1+1)2dx=−∫y+1(y+1−1)2dy
∫((x−1)+2+x−11)dx=−∫((y+1)−2+y+11)dy
∫(x+1+x−11)dx=−∫(y−1+y+11)dy
21(x+1)2+ln∣x−1∣=−21(y−1)2−ln∣y+1∣+lnC
(x−1)(y+1)=Ce−21((x+1)2+(y−1)2)
Answer:
1. cosy=42(ex+1)
2. (x−1)(y+1)=Ce−21((x+1)2+(y−1)2)
Comments