Solve the differential equations using separating variables.
1. Cosy + ( 1+ e raise to power of -x ) siny dy/dx equal zero. Given that y= π/4 when x=0.
2. X raise to power of 2 ( y +1 ) + y raise to power of 2 ( x - 1 ) dy/dx equal zero.
Solve the differential equations using separating variables.
1. Cosy + ( 1+ e raise to power of -x ) siny dy/dx equal zero. Given that y= π/4 when x=0.
2. X raise to power of 2 ( y +1 ) + y raise to power of 2 ( x - 1 ) dy/dx equal zero.
Solution:
1. "\\cos{y}+(1+e^{-x})\\sin{y}\\frac{dy}{dx}=0"
"\\cos{y}=-(1+e^{-x})\\sin{y}\\frac{dy}{dx}"
"\\frac{dx}{1+e^{-x}}=-\\frac{\\sin{y}dy}{\\cos{y}}"
"\\int\\frac{dx}{1+e^{-x}}=-\\int\\frac{\\sin{y}dy}{\\cos{y}}"
"\\int\\frac{e^{x}dx}{1+e^{x}}=\\int\\frac{d\\cos{y}}{\\cos{y}}"
"\\int\\frac{d(e^{x}+1)}{1+e^{x}}=\\int\\frac{d\\cos{y}}{\\cos{y}}"
"\\ln(e^x+1)+\\ln{C}=\\ln{\\cos{y}}"
"\\cos{y}=C(e^x+1)"
"\\cos{\\frac{\\pi}{4}}=C(e^0+1)"
"\\frac{1}{\\sqrt2}=C\\cdot2"
"C=\\frac{1}{2\\sqrt2}=\\frac{\\sqrt2}{4}"
"\\cos{y}=\\frac{\\sqrt2}{4}(e^x+1)" .
2. "x^2(y+1)+y^2(x-1)\\frac{dy}{dx}=0"
"x^2(y+1)=-y^2(x-1)\\frac{dy}{dx}"
"\\frac{x^2dx}{x-1}=-\\frac{y^2dy}{y+1}"
"\\int\\frac{(x-1+1)^2dx}{x-1}=-\\int\\frac{(y+1-1)^2dy}{y+1}"
"\\int((x-1)+2+\\frac{1}{x-1})dx=-\\int((y+1)-2+\\frac{1}{y+1})dy"
"\\int(x+1+\\frac{1}{x-1})dx=-\\int(y-1+\\frac{1}{y+1})dy"
"\\frac12(x+1)^2+\\ln{|x-1|}=-\\frac12(y-1)^2-\\ln{|y+1|}+\\ln{C}"
"(x-1)(y+1)=Ce^{-\\frac12((x+1)^2+(y-1)^2)}"
Answer:
1. "\\cos{y}=\\frac{\\sqrt2}{4}(e^x+1)"
2. "(x-1)(y+1)=Ce^{-\\frac12((x+1)^2+(y-1)^2)}"
Comments
Leave a comment