Question #159524

Solve the differential equations using separating variables.

1. Cosy + ( 1+ e raise to power of -x ) siny dy/dx equal zero. Given that y= π/4 when x=0.

2. X raise to power of 2 ( y +1 ) + y raise to power of 2 ( x - 1 ) dy/dx equal zero.


1
Expert's answer
2021-02-03T04:58:21-0500

Solve the differential equations using separating variables.

1. Cosy + ( 1+ e raise to power of -x ) siny dy/dx equal zero. Given that y= π/4 when x=0.

2. X raise to power of 2 ( y +1 ) + y raise to power of 2 ( x - 1 ) dy/dx equal zero.


Solution:

1. cosy+(1+ex)sinydydx=0\cos{y}+(1+e^{-x})\sin{y}\frac{dy}{dx}=0

cosy=(1+ex)sinydydx\cos{y}=-(1+e^{-x})\sin{y}\frac{dy}{dx}

dx1+ex=sinydycosy\frac{dx}{1+e^{-x}}=-\frac{\sin{y}dy}{\cos{y}}

dx1+ex=sinydycosy\int\frac{dx}{1+e^{-x}}=-\int\frac{\sin{y}dy}{\cos{y}}

exdx1+ex=dcosycosy\int\frac{e^{x}dx}{1+e^{x}}=\int\frac{d\cos{y}}{\cos{y}}

d(ex+1)1+ex=dcosycosy\int\frac{d(e^{x}+1)}{1+e^{x}}=\int\frac{d\cos{y}}{\cos{y}}

ln(ex+1)+lnC=lncosy\ln(e^x+1)+\ln{C}=\ln{\cos{y}}

cosy=C(ex+1)\cos{y}=C(e^x+1)

cosπ4=C(e0+1)\cos{\frac{\pi}{4}}=C(e^0+1)

12=C2\frac{1}{\sqrt2}=C\cdot2

C=122=24C=\frac{1}{2\sqrt2}=\frac{\sqrt2}{4}

cosy=24(ex+1)\cos{y}=\frac{\sqrt2}{4}(e^x+1) .


2. x2(y+1)+y2(x1)dydx=0x^2(y+1)+y^2(x-1)\frac{dy}{dx}=0

x2(y+1)=y2(x1)dydxx^2(y+1)=-y^2(x-1)\frac{dy}{dx}

x2dxx1=y2dyy+1\frac{x^2dx}{x-1}=-\frac{y^2dy}{y+1}

(x1+1)2dxx1=(y+11)2dyy+1\int\frac{(x-1+1)^2dx}{x-1}=-\int\frac{(y+1-1)^2dy}{y+1}

((x1)+2+1x1)dx=((y+1)2+1y+1)dy\int((x-1)+2+\frac{1}{x-1})dx=-\int((y+1)-2+\frac{1}{y+1})dy

(x+1+1x1)dx=(y1+1y+1)dy\int(x+1+\frac{1}{x-1})dx=-\int(y-1+\frac{1}{y+1})dy

12(x+1)2+lnx1=12(y1)2lny+1+lnC\frac12(x+1)^2+\ln{|x-1|}=-\frac12(y-1)^2-\ln{|y+1|}+\ln{C}

(x1)(y+1)=Ce12((x+1)2+(y1)2)(x-1)(y+1)=Ce^{-\frac12((x+1)^2+(y-1)^2)}


Answer:

1. cosy=24(ex+1)\cos{y}=\frac{\sqrt2}{4}(e^x+1)

2. (x1)(y+1)=Ce12((x+1)2+(y1)2)(x-1)(y+1)=Ce^{-\frac12((x+1)^2+(y-1)^2)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS