Question #160283

Show that v(x, y;a, b)= (x+y)[2xy+(a-b)(x-y)+2ab]/(a+b)3 is the Reimann function for second order pde uxy + (2/x+y)(ux + uy)=0


1
Expert's answer
2021-02-02T05:52:24-0500

L(u)=uxy+a(x,y)ux+b(x,y)uy+c(x,y)u=f(x,y)L(u)=u_{xy}+a(x,y)u_x+b(x,y)u_y+c(x,y)u=f(x,y)

L(v)=vxy(av)x(bv)y+cvL^*(v)=v_{xy}-(av)_x-(bv)_y+cv

Condition of Riemann's function:

L(v)=0L^*(v)=0


vx=2xy+(ab)(xy)+2ab(a+b)3+(x+y)[2y+(ab)](a+b)3v_x=\frac{2xy+(a-b)(x-y)+2ab}{(a+b)^3}+\frac{(x+y)[2y+(a-b)]}{(a+b)^3}

vxy=2x(ab)(a+b)3+2y+(ab)(a+b)3+2(x+y)(a+b)3=4(x+y)(a+b)3v_{xy}=\frac{2x-(a-b)}{(a+b)^3}+\frac{2y+(a-b)}{(a+b)^3}+\frac{2(x+y)}{(a+b)^3}=\frac{4(x+y)}{(a+b)^3}

a(x,y)v=b(x,y)v=2/(x+y)(x+y)[2xy+(ab)(xy)+2ab]/(a+b)3=a(x,y)v=b(x,y)v=2/(x+y)\cdot (x+y)[2xy+(a-b)(x-y)+2ab]/(a+b)^3=

=2[2xy+(ab)(xy)+2ab]/(a+b)3=2[2xy+(a-b)(x-y)+2ab]/(a+b)^3

cv=0cv=0

(av)x=2(2y+(ab))(a+b)3(av)_x=\frac{2(2y+(a-b))}{(a+b)^3}

(bv)y=2(2x(ab))(a+b)3(bv)_y=\frac{2(2x-(a-b))}{(a+b)^3}

L(v)=4(x+y)(a+b)32(2y+(ab))(a+b)32(2x(ab))(a+b)3=0L^*(v)=\frac{4(x+y)}{(a+b)^3}-\frac{2(2y+(a-b))}{(a+b)^3}-\frac{2(2x-(a-b))}{(a+b)^3}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS