Solve the following system of ODE
(40D+4)y - (2D+1)z = e^-x
(D+8)y - 3z = 5e^-x ; D=d/dx
{40dxdy+4y−2dxdz−z=e−xdxdy+8y−3z=5e−x
Solution:
From second equation:
z=31(dxdy+8y−5e−x) (*)
dxdz=31(dx2d2y+8dxdy+5e−x)
Substitute z and dxdz into the first equation:
40dxdy+4y−32(dx2d2y+8dxdy+5e−x)−31(dxdy+8y−5e−x)=e−x
−32dx2d2y+3103dxdy+34y=38e−x
2dx2d2y−103dxdy−4y=−8e−x (**)
First find the general solution of the corresponding homogeneous equation:
2dx2d2y0−103dxdy0−4y0=0
Let's compose and solve the characteristic equation:
2λ2−103λ−4=0
λ1=4103−10641 , λ2=4103+10641 .
y0=C1eλ1x+C2eλ2x=C1e4103−10641x+C2e4103+10641x .
Find a typical (specific) solution of the non-homogeneous equation in the form yp=Ae−x
Derivatives of the solution: dxdyp=−Ae−x , dx2d2yp=Ae−x
Substitute those "solutions" into the (**):
2Ae−x+103Ae−x−4Ae−x=−8e−x
2A+103A−4A=−8
A=−8101
yp=−8101e−x .
Add the typical and the complementary solutions to get the complete solution:
y=y0+yp=C1e4103−10641x+C2e4103+10641x−8101e−x .
To find z substitute y into the (*):
z=31(C14103−10641e4103−10641x+C24103+10641e4103+10641x+8101e−x+
8(C1e4103−10641x+C2e4103+10641x−8101e−x)−5e−x)=
C112135−10641e4103−10641x+C212135+10641e4103+10641x−8249e−x
Answer: {y=C1e4103−10641x+C2e4103+10641x−8101e−xz=C112135−10641e4103−10641x+C212135+10641e4103+10641x−8249e−x
Comments