Question #160350

 Solve the following system of ODE

(40D+4)y - (2D+1)z = e^-x

(D+8)y - 3z = 5e^-x ; D=d/dx


1
Expert's answer
2021-02-03T01:24:40-0500

Solve the following system of ODE

(40D+4)y - (2D+1)z = e^-x

(D+8)y - 3z = 5e^-x ; D=d/dx

{40dydx+4y2dzdxz=exdydx+8y3z=5ex\begin{cases} 40\frac{dy}{dx}+4y-2\frac{dz}{dx}-z=e^{-x} \\ \frac{dy}{dx}+8y-3z=5e^{-x} \end{cases}

Solution:

From second equation:

z=13(dydx+8y5ex)z=\frac13(\frac{dy}{dx}+8y-5e^{-x} ) (*)

dzdx=13(d2ydx2+8dydx+5ex)\frac{dz}{dx}=\frac13(\frac{d^2y}{dx^2}+8\frac{dy}{dx}+5e^{-x})

Substitute zz and dzdx\frac{dz}{dx} into the first equation:

40dydx+4y23(d2ydx2+8dydx+5ex)13(dydx+8y5ex)=ex40\frac{dy}{dx}+4y-\frac23(\frac{d^2y}{dx^2}+8\frac{dy}{dx}+5e^{-x})-\frac13(\frac{dy}{dx}+8y-5e^{-x} )=e^{-x}

23d2ydx2+1033dydx+43y=83ex-\frac23\frac{d^2y}{dx^2}+\frac{103}{3}\frac{dy}{dx}+\frac43y=\frac83e^{-x}

2d2ydx2103dydx4y=8ex2\frac{d^2y}{dx^2}-103\frac{dy}{dx}-4y=-8e^{-x} (**)

First find the general solution of the corresponding homogeneous equation:

2d2y0dx2103dy0dx4y0=02\frac{d^2y_0}{dx^2}-103\frac{dy_0}{dx}-4y_0=0

Let's compose and solve the characteristic equation:

2λ2103λ4=02\lambda^2-103\lambda-4=0

λ1=103106414\lambda_1=\frac{103-\sqrt{10641}}{4} , λ2=103+106414\lambda_2=\frac{103+\sqrt{10641}}{4} .

y0=C1eλ1x+C2eλ2x=C1e103106414x+C2e103+106414xy_0=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}=C_1e^{\frac{103-\sqrt{10641}}{4}x}+C_2e^{\frac{103+\sqrt{10641}}{4}x} .

Find a typical (specific) solution of the non-homogeneous equation in the form yp=Aexy_p=Ae^{-x}

Derivatives of the solution: dypdx=Aex\frac{dy_p}{dx}=-Ae^{-x} , d2ypdx2=Aex\frac{d^2y_p}{dx^2}=Ae^{-x}

Substitute those "solutions" into the (**):

2Aex+103Aex4Aex=8ex2Ae^{-x}+103Ae^{-x}-4Ae^{-x}=-8e^{-x}

2A+103A4A=82A+103A-4A=-8

A=1018A=-\frac{101}{8}

yp=1018exy_p=-\frac{101}{8}e^{-x} .

Add the typical and the complementary solutions to get the complete solution:

y=y0+yp=C1e103106414x+C2e103+106414x1018exy=y_0+y_p=C_1e^{\frac{103-\sqrt{10641}}{4}x}+C_2e^{\frac{103+\sqrt{10641}}{4}x}-\frac{101}{8}e^{-x} .

To find zz substitute yy into the (*):

z=13(C1103106414e103106414x+C2103+106414e103+106414x+1018ex+z=\frac13(C_1\frac{103-\sqrt{10641}}{4}e^{\frac{103-\sqrt{10641}}{4}x}+C_2\frac{103+\sqrt{10641}}{4}e^{\frac{103+\sqrt{10641}}{4}x}+\frac{101}{8}e^{-x}+

8(C1e103106414x+C2e103+106414x1018ex)5ex)=8(C_1e^{\frac{103-\sqrt{10641}}{4}x}+C_2e^{\frac{103+\sqrt{10641}}{4}x}-\frac{101}{8}e^{-x})-5e^{-x} )=

C11351064112e103106414x+C2135+1064112e103+106414x2498exC_1\frac{135-\sqrt{10641}}{12}e^{\frac{103-\sqrt{10641}}{4}x}+C_2\frac{135+\sqrt{10641}}{12}e^{\frac{103+\sqrt{10641}}{4}x}-\frac{249}{8}e^{-x}

Answer: {y=C1e103106414x+C2e103+106414x1018exz=C11351064112e103106414x+C2135+1064112e103+106414x2498ex\begin{cases} y=C_1e^{\frac{103-\sqrt{10641}}{4}x}+C_2e^{\frac{103+\sqrt{10641}}{4}x}-\frac{101}{8}e^{-x} \\ z=C_1\frac{135-\sqrt{10641}}{12}e^{\frac{103-\sqrt{10641}}{4}x}+C_2\frac{135+\sqrt{10641}}{12}e^{\frac{103+\sqrt{10641}}{4}x}-\frac{249}{8}e^{-x} \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS