Question #160488

Solve

ut = uxx 0<x<l, t>0

u(0, t)= u(l, t)= 0

u(x, 0)= x(l-x) , 0<=x<=l



1
Expert's answer
2021-02-04T08:16:04-0500

Solution

Solution can be found in the form  u(x,t) = X(x)*T(t)

X’’/X = T’/T  => X’’/X = T’/T = -λ2  

X’’+ λ2X = 0  =>  X = Asin(λ*x) + Bcos(λ*x) . Here A,B are arbitrary constants.

From boundary condition u(0, t) = 0  => B = 0  

From boundary condition u(l, t) = 0  => sin(λ*x) = 0  =>  λ = π*n/l (n = 1,2, …)  

So  X = Asin(π*n *x/l)

Equation on T gives now  T’ + λ2 T = 0  =>  T = exp(- λ2 t) = exp(- (π*n/l)2 t)   

And un = An* exp(- (π*n/l)2 t)* sin(π*n *x/l)

u(x,t)=n=1Ane(πn/l)2tsin(πnxl)u(x,t)=\displaystyle\sum_{n=1}^\infty A_n e^{-(\pi n/l)^2t} sin(\pi n \frac{x}{l})

From initial condition u(x, 0)= x(l-x) , 0<=x<=l

x(lx)=n=1Ansin(πnxl)x(l-x)=\displaystyle\sum_{n=1}^\infty A_n sin(\pi n \frac{x}{l})

An=0lx(lx)sin(πnx/l)dx0lsin2(πnx/l)dxA_n=\frac{\displaystyle\int_0^l x(l-x) sin(\pi n x/l) dx}{\displaystyle\int_0^l sin^2(\pi n x/l) dx}

An=2l0lx(lx)sin(πnx/l)dxA_n= \frac{2}{l} \displaystyle\int_0^l x(l-x) sin(\pi n x/l) dx


Let y = x/l => An=2l201y(1y)sin(πny)dyA_n= 2l^2 \displaystyle\int_0^1 y(1-y) sin(\pi n y) dy

Let z = π*n *y  => An=2l2(πn)20πnz(1zπn)sin(z)dzA_n= \frac{2l^2}{(\pi n)^2} \displaystyle\int_0^{\pi n} z(1-\frac{z}{\pi n}) sin(z) dz


An=2l2(πn)2[sin(z)zcos(z)1πn(2zsin(z)(z22)cos(z))]0πnA_n=\frac{2l^2}{(\pi n)^2} [sin(z)-z cos(z) -\frac{1}{\pi n} (2z sin(z)-(z^2-2) cos(z))] |_0^{\pi n}

An=2l2(πn)2[πn()n+1+1πn((πn)22)()n+2πn]A_n​=\frac{2l^2}{(\pi n)^2} [\pi n (-)^{n+1}+\frac{1}{\pi n}((\pi n)^2-2)(-)^n+\frac{2}{\pi n}]

An=4l2(πn)3[()n+1+1]A_n​=\frac{4l^2}{(\pi n)^3} [(-)^{n+1}+1]

A2m = 0, A2m+1 = 8l2/(π*(2m+1))3   (m = 0,1, …)

u(x,t)=8l2m=01(π(2m+1))3e(π(2m+1)/l)2tsin(π(2m+1)xl)u(x,t)=8l^2\displaystyle\sum_{m=0}^\infty \frac{1}{(\pi (2m+1))^3} e^{-(\pi (2m+1)/l)^2t} sin(\pi (2m+1) \frac{x}{l})


Answer


u(x,t)=8l2m=01(π(2m+1))3e(π(2m+1)/l)2tsin(π(2m+1)xl)u(x,t)=8l^2\displaystyle\sum_{m=0}^\infty \frac{1}{(\pi (2m+1))^3} e^{-(\pi (2m+1)/l)^2t} sin(\pi (2m+1) \frac{x}{l})



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS