Solution
Solution can be found in the form u(x,t) = X(x)*T(t)
X’’/X = T’/T => X’’/X = T’/T = -λ2
X’’+ λ2X = 0 => X = Asin(λ*x) + Bcos(λ*x) . Here A,B are arbitrary constants.
From boundary condition u(0, t) = 0 => B = 0
From boundary condition u(l, t) = 0 => sin(λ*x) = 0 => λ = π*n/l (n = 1,2, …)
So X = Asin(π*n *x/l)
Equation on T gives now T’ + λ2 T = 0 => T = exp(- λ2 t) = exp(- (π*n/l)2 t)
And un = An* exp(- (π*n/l)2 t)* sin(π*n *x/l)
u(x,t)=n=1∑∞Ane−(πn/l)2tsin(πnlx)
From initial condition u(x, 0)= x(l-x) , 0<=x<=l
x(l−x)=n=1∑∞Ansin(πnlx)
An=∫0lsin2(πnx/l)dx∫0lx(l−x)sin(πnx/l)dx
An=l2∫0lx(l−x)sin(πnx/l)dx
Let y = x/l => An=2l2∫01y(1−y)sin(πny)dy
Let z = π*n *y => An=(πn)22l2∫0πnz(1−πnz)sin(z)dz
An=(πn)22l2[sin(z)−zcos(z)−πn1(2zsin(z)−(z2−2)cos(z))]∣0πn
An=(πn)22l2[πn(−)n+1+πn1((πn)2−2)(−)n+πn2]
An=(πn)34l2[(−)n+1+1]
A2m = 0, A2m+1 = 8l2/(π*(2m+1))3 (m = 0,1, …)
u(x,t)=8l2m=0∑∞(π(2m+1))31e−(π(2m+1)/l)2tsin(π(2m+1)lx)
Answer
u(x,t)=8l2m=0∑∞(π(2m+1))31e−(π(2m+1)/l)2tsin(π(2m+1)lx)
Comments