Solve the Heat Equation du/dt=40d²u/dx² Subject to the conditions
u(0,t)=0, u(π,t)=0
u(x,0)=5sinx-2sin5x
Solution:
We know that the solution of general heat equation
"\\begin{array}{l}\n\\frac{\\partial u}{\\partial t}=k \\frac{\\partial^{2} u}{\\partial x^{2}} \\\\\nu(x, 0)=f(x) \\quad u(0, t)=0 \\quad u(L, t)=0\n\\end{array}"
is as follows:
"u_{n}(x, t)=B_{n} \\sin \\left(\\frac{n \\pi x}{L}\\right) \\mathbf{e}^{-k\\left(\\frac{n \\pi}{L}\\right)^{2} t} \\quad n=1,2,3, \\ldots" ...(i)
Now, given :
du/dt=40d²u/dx²
u(0,t)=0, u(π,t)=0
u(x,0)=5sinx-2sin5x
On comparing, we have:
"k=40,\\ L=\\pi,\\ f(x)=5\\sin x-2\\sin 5x"
Choosing "n=1,\\ B_n" as 5 and -2 respectively.
Putting these values in (i), we get,
"u(x, t)=2 \\sin \\left(\\frac{ \\pi x}{\\pi}\\right) \\mathbf{e}^{-40\\left(\\frac{ \\pi}{\\pi}\\right)^{2} t} -5 \\sin \\left(\\frac{ \\pi x}{\\pi}\\right) \\mathbf{e}^{-40\\left(\\frac{ \\pi}{\\pi}\\right)^{2} t}"
"\\Rightarrow u(x, t)=2 \\sin x \\mathbf{e}^{-40 t} -5 \\sin x \\mathbf{e}^{-40 t}"
Comments
Leave a comment