Solution:
We know that the solution of general heat equation
∂t∂u=k∂x2∂2uu(x,0)=f(x)u(0,t)=0u(L,t)=0
is as follows:
un(x,t)=Bnsin(Lnπx)e−k(Lnπ)2tn=1,2,3,… ...(i)
Now, given :
du/dt=40d²u/dx²
u(0,t)=0, u(π,t)=0
u(x,0)=5sinx-2sin5x
On comparing, we have:
k=40, L=π, f(x)=5sinx−2sin5x
Choosing n=1, Bn as 5 and -2 respectively.
Putting these values in (i), we get,
u(x,t)=2sin(ππx)e−40(ππ)2t−5sin(ππx)e−40(ππ)2t
⇒u(x,t)=2sinxe−40t−5sinxe−40t
Comments