Question #160927

Solve the following equation of the form 1+p^2=qz


1
Expert's answer
2021-02-25T05:03:35-0500

1+p2-qz=0

Therefore the Charpit's auxiliary equation is

dpdfdx+pdfdz=dqdfdy+qdfdz=dzpdfdpqdfdq=dxdfdp=dydfdq\frac{dp}{\frac{df}{dx}+p \frac{df}{dz}}=\frac{dq}{\frac{df}{dy}+q \frac{df}{dz}}=\frac{dz}{-p\frac{df}{dp}-q\frac{df}{dq}}=\frac{dx}{\frac{-df}{dp}}=\frac{dy}{-\frac{df}{dq}}

or

dp0pq=dq0q2=dz2p2+qz=dx2p=dyz\frac{dp}{0-pq}=\frac{dq}{0-q^2}=\frac{dz}{-2p^2+qz}=\frac{dx}{-2p}=\frac{dy}{z}


dpp=dqq\frac{dp}{-p}=\frac{dq}{-q}

p=qp=q

2q3=y/z\frac{2}{q^3}=y/z


q=2zy3q=\sqrt[3]{\frac{2z}{y}}

dz=pdx+qdydz=pdx+qdy dz=2zy3dx+2zy3dydz=\sqrt[3]{\frac{2z}{y}}dx+\sqrt[3]{\frac{2z}{y}}dy

z=x2zy3132zy43z=x\sqrt[3]{\frac{2z}{y}}-\frac{-1}{3}\sqrt[3]{\frac{2z}{y^4}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS