Solve the following equation of the form 1+p^2=qz
1+p2-qz=0
Therefore the Charpit's auxiliary equation is
"\\frac{dp}{\\frac{df}{dx}+p \\frac{df}{dz}}=\\frac{dq}{\\frac{df}{dy}+q \\frac{df}{dz}}=\\frac{dz}{-p\\frac{df}{dp}-q\\frac{df}{dq}}=\\frac{dx}{\\frac{-df}{dp}}=\\frac{dy}{-\\frac{df}{dq}}"
or
"\\frac{dp}{0-pq}=\\frac{dq}{0-q^2}=\\frac{dz}{-2p^2+qz}=\\frac{dx}{-2p}=\\frac{dy}{z}"
"\\frac{dp}{-p}=\\frac{dq}{-q}"
"p=q"
"\\frac{2}{q^3}=y\/z"
"q=\\sqrt[3]{\\frac{2z}{y}}"
"dz=pdx+qdy" "dz=\\sqrt[3]{\\frac{2z}{y}}dx+\\sqrt[3]{\\frac{2z}{y}}dy"
"z=x\\sqrt[3]{\\frac{2z}{y}}-\\frac{-1}{3}\\sqrt[3]{\\frac{2z}{y^4}}"
Comments
Leave a comment