Question #160926

2e^x is a particular integral for y'-y=2e^x. Is it true or false. Give reasons for your answer


1
Expert's answer
2021-02-24T07:35:55-0500

Here we have, the differential equation yy=2exy'-y=2e^x where y=dydxy'=\frac{dy}{dx}


Now, the co-efficient of yy is 1-1 .


So, let μ(x)=e1dx=ex\mu(x)=e^{\int-1dx}=e^{-x}


Now, multiplying both sides of the differential equation by μ(x)\mu(x) we get:-



μ(x)yμ(x)y=2exμ(x)exdydxyex=2exddx(y)+yddx(ex)=2ddx(yex)=2d(yex)=2dx\mu(x)y'-\mu(x)y=2e^x\mu(x)\\ \Rightarrow e^{-x}\cdot\frac{dy}{dx}-ye^{-x}=2\\ \Rightarrow e^{-x}\cdot \frac{d}{dx}(y)+y\cdot\frac{d}{dx}(e^{-x})=2\\ \Rightarrow \frac{d}{dx}(ye^{-x})=2\\ \Rightarrow d(ye^{-x})=2dx\\

Integrating both sides we have:-



d(yex)=2dx+C(C(constant)R)yex=2x+C\int d(ye^{-x})=2\int dx+C \>\>\>\> (C(constant)\in\R)\\ \Rightarrow ye^{-x}=2x+C

Now, to check if y=2exy=2e^x is a solution we substitute yy in place of the general solution:-


2exex=2x+CC=22x2e^x\cdot e^{-x}=2x+C\\ \Rightarrow C=2-2x


As CC is not a constant (i.e. independent of x) so y=2exy=2e^x is not a solution for the given differential equation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS