Question #160989

y" -5y' +4y=0 ;y(0)=1 and y' (0)=1 .


1
Expert's answer
2021-02-04T14:32:01-0500

y5y+4y=0;    y(0)=1   and   y(0)=1.y'' -5y' +4y=0 ; \space \space\space \space y(0)=1 \space\space \space and \space \space\space y' (0)=1 .

Setup the auxilary equation

λ25λ+4=0λ1=1    λ2=4\lambda^2 - 5\lambda +4 = 0 \to \lambda_1= 1 \space \space\space \space \lambda_2=4

The general solution is found by

Usually problem like these will have the answer in the form C1ea+C2eb...C_1e^a+C_2e^b... where a and b  are the roots of the characteristic equation erte^{rt}

y = C1et+C2e4tC_1e^{t} + C_2e^{4t} C1+C2=1\to C_1+C_2 = 1

y=C1et+4C2e4tC1+4C2=1y' = C_1e^t+4C_2e^{4t} \to C_1+4C_2 = 1

C1=1    C2=0C_1 = 1 \space\space\space\space C_2= 0

The general solution is: y=ety = e^t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS