Given differential equation ( D 3 − 1 ) y = s i n x (D^3-1)y=sinx ( D 3 − 1 ) y = s in x
Auxiliary equation corresponding to the given homogeneous differential equation is
m 3 − 1 = 0 ⇒ ( m − 1 ) ( m 2 + m + 1 ) = 0 m^3-1=0\Rightarrow (m-1)(m^2+m+1)=0 m 3 − 1 = 0 ⇒ ( m − 1 ) ( m 2 + m + 1 ) = 0
⇒ m = 1 , m = − 1 ± 1 − 4 2 = − 1 ± 3 i 2 \Rightarrow m=1,m=\frac{-1\pm \sqrt{1-4}}{2}=\frac{-1\pm \sqrt{3}i}{2} ⇒ m = 1 , m = 2 − 1 ± 1 − 4 = 2 − 1 ± 3 i
Solution to the homogeneous differential equation is
y h ( x ) = c 1 e x + e − x 2 [ c 2 c o s ( 3 x 2 ) + c 3 s i n ( 3 x 2 ) ] y_{h}(x)=c_{1}e^{x}+e^{\frac{-x}{2}}\left [ c_{2}cos(\frac{\sqrt{3}x}{2})+c_{3}sin(\frac{\sqrt{3}x}{2}) \right ] y h ( x ) = c 1 e x + e 2 − x [ c 2 cos ( 2 3 x ) + c 3 s in ( 2 3 x ) ]
Now let us find the particular solution using the method of undetermined coefficeints.
A particular solution using the method of undetermined coefficients is
y p ( x ) = A s i n x + B c o s x y_{p}(x)=Asinx+Bcosx y p ( x ) = A s in x + B cos x
⇒ y p ′ ( x ) = A c o s x − B s i n x , y p ′ ′ ( x ) = − A s i n x − B c o s x , \Rightarrow y'_{p}(x)=Acosx-Bsinx, y''_{p}(x)=-Asinx-Bcosx, ⇒ y p ′ ( x ) = A cos x − B s in x , y p ′′ ( x ) = − A s in x − B cos x ,
y p ′ ′ ′ ( x ) = − A c o s x + B s i n x y'''_{p}(x)=-Acosx+Bsinx y p ′′′ ( x ) = − A cos x + B s in x
Now y p ′ ′ ′ ( x ) − y p ( x ) = s i n x y'''_{p}(x)-y_{p}(x)=sinx y p ′′′ ( x ) − y p ( x ) = s in x
⇒ − A c o s x + B s i n x − A c o s x + B s i n x = s i n x \Rightarrow -Acosx+Bsinx-Acosx+Bsinx=sinx ⇒ − A cos x + B s in x − A cos x + B s in x = s in x
⇒ − 2 A c o s x + 2 B s i n x = s i n x \Rightarrow -2Acosx+2Bsinx=sinx ⇒ − 2 A cos x + 2 B s in x = s in x
⇒ A = 0 , B = 1 2 \Rightarrow A=0, B=\frac{1}{2} ⇒ A = 0 , B = 2 1
So, the particular solution is y p ( x ) = 1 2 c o s x y_{p}(x)=\frac{1}{2}cosx y p ( x ) = 2 1 cos x
Therefore, general solution to the given differential equation is
y ( x ) = y h ( x ) + y p ( x ) y(x)=y_{h}(x)+y_{p}(x) y ( x ) = y h ( x ) + y p ( x )
That is
y ( x ) = c 1 e x + e x 2 [ c 2 c o s ( 3 x 2 ) + c 3 s i n ( 3 x 2 ) ] y(x)=c_{1}e^{x}+e^{\frac{x}{2}}\left [ c_{2}cos(\frac{\sqrt{3}x}{2})+c_{3}sin(\frac{\sqrt{3}x}{2}) \right ] y ( x ) = c 1 e x + e 2 x [ c 2 cos ( 2 3 x ) + c 3 s in ( 2 3 x ) ] + 1 2 c o s x +\frac{1}{2}cosx + 2 1 cos x
Comments