Question #151680
(D3 - 1)y = 4 sin x.
1
Expert's answer
2020-12-20T18:03:44-0500

Given differential equation (D31)y=sinx(D^3-1)y=sinx

Auxiliary equation corresponding to the given homogeneous differential equation is

m31=0(m1)(m2+m+1)=0m^3-1=0\Rightarrow (m-1)(m^2+m+1)=0

m=1,m=1±142=1±3i2\Rightarrow m=1,m=\frac{-1\pm \sqrt{1-4}}{2}=\frac{-1\pm \sqrt{3}i}{2}

Solution to the homogeneous differential equation is

yh(x)=c1ex+ex2[c2cos(3x2)+c3sin(3x2)]y_{h}(x)=c_{1}e^{x}+e^{\frac{-x}{2}}\left [ c_{2}cos(\frac{\sqrt{3}x}{2})+c_{3}sin(\frac{\sqrt{3}x}{2}) \right ]

Now let us find the particular solution using the method of undetermined coefficeints.

A particular solution using the method of undetermined coefficients is

yp(x)=Asinx+Bcosxy_{p}(x)=Asinx+Bcosx

yp(x)=AcosxBsinx,yp(x)=AsinxBcosx,\Rightarrow y'_{p}(x)=Acosx-Bsinx, y''_{p}(x)=-Asinx-Bcosx,

yp(x)=Acosx+Bsinxy'''_{p}(x)=-Acosx+Bsinx

Now yp(x)yp(x)=sinxy'''_{p}(x)-y_{p}(x)=sinx

Acosx+BsinxAcosx+Bsinx=sinx\Rightarrow -Acosx+Bsinx-Acosx+Bsinx=sinx

2Acosx+2Bsinx=sinx\Rightarrow -2Acosx+2Bsinx=sinx

A=0,B=12\Rightarrow A=0, B=\frac{1}{2}

So, the particular solution is yp(x)=12cosxy_{p}(x)=\frac{1}{2}cosx

Therefore, general solution to the given differential equation is

y(x)=yh(x)+yp(x)y(x)=y_{h}(x)+y_{p}(x)

That is

y(x)=c1ex+ex2[c2cos(3x2)+c3sin(3x2)]y(x)=c_{1}e^{x}+e^{\frac{x}{2}}\left [ c_{2}cos(\frac{\sqrt{3}x}{2})+c_{3}sin(\frac{\sqrt{3}x}{2}) \right ] +12cosx+\frac{1}{2}cosx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS