Question #151075
Find a integral surface of the differential equation p^2x+ pqy =2pz+x, passing through the line y=1, x=z
1
Expert's answer
2020-12-18T14:46:10-0500

p2x+pqy-2pz-x=0

dpdfdx+pdfdz=dqdfdy+qdfdz=dzpdfdpqdfdq=dxdfdp=dydfdq\frac{dp}{\frac{df}{dx}+p\frac{df}{dz}}=\frac{dq}{\frac{df}{dy}+q\frac{df}{dz}}=\frac{dz}{-p\frac{df}{dp}-q\frac{df}{dq}}=\frac{dx}{-\frac{df}{dp}}=\frac{dy}{-\frac{df}{dq}}

dpp21+p+2p)=dqpq+q(2p)=dzp(2px+qy2z)qpy=dx(2px+qy2z)=dypy\frac{dp}{p^2-1+p+-2p)}=\frac{dq}{pq+q(-2p)}=\frac{dz}{-p(2px+qy-2z)-qpy}=\frac{dx}{-(2px+qy-2z)}=\frac{dy}{-py}

dpp21=dqpq=dz2p2x2pqy+2pz=dx2pxqy+2z=dypy\frac{dp}{-p^2-1}=\frac{dq}{-pq}=\frac{dz}{-2p^2x-2pqy+2pz}=\frac{dx}{-2px-qy+2z}=\frac{dy}{-py}

dpp21=0\frac{dp}{-p^2-1}=0

-arctan(p)=a

p=tan(-a)=c

-pqdp=(-p2-1)dq

pp21dp=dqq\frac{-p}{-p^2-1}dp=\frac{dq}{q}

Let t=p2, dt=2p

pp21dp=12(t1)dt=121t+1dp=ln(t+1)2=ln(p2+1)2\int{\frac{-p}{-p^2-1}dp}=-\int{\frac{1}{2(-t-1)}dt}=\frac{1}{2}\int{\frac{1}{t+1}dp}=\frac{ln(t+1)}{2}=\frac{ln(p^2+1)}{2}

ln(p2+1)2=lnq\frac{ln(p^2+1)}{2}=lnq

p2+1=q2

q=p2+1=c2+1q=\sqrt{p^2+1}=\sqrt{c^2+1}

dz=pdx+qdy

dz=cdx+c2+1dydz=cdx+\sqrt{c^2+1}dy

z=cx+c2+1y+bz=cx+\sqrt{c^2+1}y+b

y=1, x=z

z=cz+c2+1+bz=cz+\sqrt{c^2+1}+b

z(1c)=c2+1+bz(1-c)=\sqrt{c^2+1}+b

z=c2+1+b1cz=\frac{\sqrt{c^2+1}+b}{1-c}


Answer:c2x+cc2+1y=2cz+xc^2x+c\sqrt{c^2+1}y=2cz+x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
11.04.21, 16:19

Using that differential equation one can conclude p is constant. It can be proved because pdp/(p^2+1)=dq/q=dy/y. If the function of p simultaneously depends on different variables, it is constant.

Nitu
05.04.21, 07:34

How you have taken dp/(p^2)-1=0 give reason

LATEST TUTORIALS
APPROVED BY CLIENTS