Question #151328
Find the integral of the Pfaffian differential equation
(1+yz)dx+x(z-x)dy-(1+xy)dz=0
1
Expert's answer
2020-12-17T19:02:16-0500

The necessary and sufficient conditionfor iintegrability is

R(PyQx)+P(QzRy)+Q(RxPz)=0R(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x})+P(\frac{\partial Q}{\partial z}-\frac{\partial R}{\partial y})+Q(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z})=0

(1+xy)(z(z2x))+(1+yz)(x+x)+x(zx)(yy)=-(1+xy)(z-(z-2x))+(1+yz)(x+x)+x(z-x)(-y-y)=

=2x2x2y+2x+2xyz2xyz+2x2y=0=-2x-2x^2y+2x+2xyz-2xyz+2x^2y=0

Thus, the given equation is integrable.


(1+yx)dz(1+yx)dxx(zx)dyy(zx)dx=0(1+yx)dz−(1+yx)dx−x(z−x)dy−y(z−x)dx=0

(1+yx)d(zx)(xdy+ydx)(zx)=0(1+yx)d(z−x)−(xdy+ydx)(z−x)=0

(1+yx)d(zx)d(1+xy)(zx)=0(1+yx)d(z−x)−d(1+xy)(z−x)=0

d(zx)zxd(1+xy)1+xy=0\frac{d(z-x)}{z-x}-\frac{d(1+xy)}{1+xy}=0

ln(zx)ln(1+xy)=lnc1ln(z−x)−ln(1+xy)=lnc_1 ​

zx1+xy=c1\frac{z-x}{1+xy}=c_1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS