The necessary and sufficient conditionfor iintegrability is
R(∂y∂P−∂x∂Q)+P(∂z∂Q−∂y∂R)+Q(∂x∂R−∂z∂P)=0
−(1+xy)(z−(z−2x))+(1+yz)(x+x)+x(z−x)(−y−y)=
=−2x−2x2y+2x+2xyz−2xyz+2x2y=0
Thus, the given equation is integrable.
(1+yx)dz−(1+yx)dx−x(z−x)dy−y(z−x)dx=0
(1+yx)d(z−x)−(xdy+ydx)(z−x)=0
(1+yx)d(z−x)−d(1+xy)(z−x)=0
z−xd(z−x)−1+xyd(1+xy)=0
ln(z−x)−ln(1+xy)=lnc1
1+xyz−x=c1
Comments