Question #151327
Find the general integral of
(x^3-3xy^2)p+(y^3+3x^2y)q=2(x^2+y^2)z
1
Expert's answer
2020-12-17T07:18:02-0500

dxx33xy2=dyy3+3x2y=dz2z(x2+y2)\frac{dx}{x^3-3xy^2}=\frac{dy}{y^3+3x^2y}=\frac{dz}{2z(x^2+y^2)}

dydx=y3+3x2yx33xy2\frac{dy}{dx}=\frac{y^3+3x^2y}{x^3-3xy^2}

This is a homogeneous differential equation.

Let y/x=v,y=xv,dy/dx=v+x(dv/dx)y/x=v, y=xv, dy/dx=v+x(dv/dx)

Then:

v+xdvdx=(xv)3+3x3vx33x3v2=v3+3v13v2v+x\frac{dv}{dx}=\frac{(xv)^3+3x^3v}{x^3-3x^3v^2}=\frac{v^3+3v}{1-3v^2}

xdvdx=v3+3v13v2v=4v3+2v13v2x\frac{dv}{dx}=\frac{v^3+3v}{1-3v^2}-v=\frac{4v^3+2v}{1-3v^2}

1213v2v(2v2+1)dv=dxx\frac{1}{2}\intop\frac{1-3v^2}{v(2v^2+1)}dv=\intop \frac{dx}{x}

13v2v(2v2+1)=Av+Bv+C2v2+1\frac{1-3v^2}{v(2v^2+1)}=\frac{A}{v}+\frac{Bv+C}{2v^2+1}

A(2v2+1)+v(Bv+C)=13v2A(2v^2+1)+v(Bv+C)=1-3v^2

2A+B=32A+B=-3

A=1A=1

C=0C=0

B=32A=5B=-3-2A=-5

13v2v(2v2+1)=1v5v2v2+1\frac{1-3v^2}{v(2v^2+1)}=\frac{1}{v}-\frac{5v}{2v^2+1}

v2v2+1dv=12d(v2)2v2+1dv=ln(2v2+1)4\intop\frac{v}{2v^2+1}dv=\frac{1}{2}\intop\frac{d(v^2)}{2v^2+1}dv=\frac{ln(2v^2+1)}{4}


lnv25ln(2v2+1)8=lnx+lnc1\frac{lnv}{2}-\frac{5ln(2v^2+1)}{8}=lnx+lnc_1

ln(v1/2(2v2+1)5/8)=ln(c1x)ln(\frac{v^{1/2}}{(2v^2+1)^{5/8}})=ln(c_1x)

(y/x)1/2x(2(y/x)2+1)5/8=c1\frac{(y/x)^{1/2}}{x(2(y/x)^2+1)^{5/8}}=c_1



dx/x+dy/y+dz/z6x2=3(dx/xdy/y+dz/z)6y2=dz2z(x2+y2)\frac{dx/x+dy/y+dz/z}{6x^2}=-\frac{3(dx/x-dy/y+dz/z)}{6y^2}=\frac{dz}{2z(x^2+y^2)}

dx/x+dy/y+dz/z3(dx/xdy/y+dz/z)6x2+6y2=3dz/z6(x2+y2)\frac{dx/x+dy/y+dz/z-3(dx/x-dy/y+dz/z)}{6x^2+6y^2}=\frac{3dz/z}{6(x^2+y^2)}

dx/x+dy/y+dz/z3(dx/xdy/y+dz/z)=3dz/zdx/x+dy/y+dz/z-3(dx/x-dy/y+dz/z)=3dz/z

4dy/y2dx/x=5dz/z4dy/y-2dx/x=5dz/z

4lny2lnx=5lnz+lnc24lny-2lnx=5lnz+lnc_2

ln(y4/x2)=ln(c2z5)ln(y^4/x^2)=ln(c_2z^5)

y4x2z5=c2\frac{y^4}{x^2z^5}=c_2


The general integral:

ϕ((y/x)1/2x(2(y/x)2+1)5/8,y4x2z5)=0\phi(\frac{(y/x)^{1/2}}{x(2(y/x)^2+1)^{5/8}}, \frac{y^4}{x^2z^5})=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS