x3−3xy2dx=y3+3x2ydy=2z(x2+y2)dz
dxdy=x3−3xy2y3+3x2y
This is a homogeneous differential equation.
Let y/x=v,y=xv,dy/dx=v+x(dv/dx)
Then:
v+xdxdv=x3−3x3v2(xv)3+3x3v=1−3v2v3+3v
xdxdv=1−3v2v3+3v−v=1−3v24v3+2v
21∫v(2v2+1)1−3v2dv=∫xdx
v(2v2+1)1−3v2=vA+2v2+1Bv+C
A(2v2+1)+v(Bv+C)=1−3v2
2A+B=−3
A=1
C=0
B=−3−2A=−5
v(2v2+1)1−3v2=v1−2v2+15v
∫2v2+1vdv=21∫2v2+1d(v2)dv=4ln(2v2+1)
2lnv−85ln(2v2+1)=lnx+lnc1
ln((2v2+1)5/8v1/2)=ln(c1x)
x(2(y/x)2+1)5/8(y/x)1/2=c1
6x2dx/x+dy/y+dz/z=−6y23(dx/x−dy/y+dz/z)=2z(x2+y2)dz
6x2+6y2dx/x+dy/y+dz/z−3(dx/x−dy/y+dz/z)=6(x2+y2)3dz/z
dx/x+dy/y+dz/z−3(dx/x−dy/y+dz/z)=3dz/z
4dy/y−2dx/x=5dz/z
4lny−2lnx=5lnz+lnc2
ln(y4/x2)=ln(c2z5)
x2z5y4=c2
The general integral:
ϕ(x(2(y/x)2+1)5/8(y/x)1/2,x2z5y4)=0
Comments