(x2+1)y′′−2xy′+2y=6(x2+1)2
Set y=vx
⟹y′=v+xv′ ,y′′=2v′+v′′ .
Put this into the equation.
(x2+1)(2v′+xv′′)−2x(v+xv′)+2xv=6(x2+1)2x(x2+1)v′′+2x2v′+2v′−2xv−2x2v′+2xv=6(x2+1)2x(x2+1)v′′+2v′=6(x2+1)2
Divide through by x(x2+1) .
v′′+x(x2+1)2v′=x6(x2+1)
Set u=v′,u′=v′′ .
u′+x(x2+1)2u=x6(x2+1)
We will be needing an Integrating factor.
I.F=e∫x(x2+1)2dx=e∫x2dx−∫x2+12dx=e2lnx−lnx2+1=elnx2+1elnx=x2+1x2
Multiply through by the I.F
x2+1x2(u′+x(x2+1)2u)=x2+1x2(x6(x2+1))dxd(ux2+1x2)=6x
Integrate both sides
ux2+1x2=∫6xdxux2+1x2=3x2+Cu=3(x2+1)+x2C(x2+1)But, u=v′.So,
v′=3(x2+1)+x2C(x2+1)Integrate both sidesv=x3+3x+xC(x2−1)+KBut, v=xy. So, y=x4+3x2+C(x2−1)+Kxy=x4+(3+C)x2+Kx−C
Comments