Question #151302
(x^2+1)d^2y/dx^2-(2x)dx/dy+2y=6(x^2+1)^2 solve it ODE
1
Expert's answer
2020-12-21T17:20:35-0500

(x2+1)y2xy+2y=6(x2+1)2(x^2+1)y''-2xy'+2y=6(x^2+1)^2

Set y=vxy=vx

    y=v+xv\implies y'=v+xv' ,y=2v+vy''=2v'+v'' .

Put this into the equation.

(x2+1)(2v+xv)2x(v+xv)+2xv=6(x2+1)2x(x2+1)v+2x2v+2v2xv2x2v+2xv=6(x2+1)2x(x2+1)v+2v=6(x2+1)2(x^2+1)(2v'+xv'')-2x(v+xv')+2xv=6(x^2+1)^2\\ x(x^2+1)v''+2x^2v'+2v'-2xv-2x^2v'+2xv=6(x^2+1)^2\\ x(x^2+1)v''+2v'=6(x^2+1)^2\\

Divide through by x(x2+1)x(x^2+1) .

v+2x(x2+1)v=6(x2+1)xv''+ \frac{2}{x(x^2+1)}v'=\frac{6(x^2+1)}{x}\\

Set u=v,u=vu=v',u'=v'' .

u+2x(x2+1)u=6(x2+1)xu'+ \frac{2}{x(x^2+1)}u=\frac{6(x^2+1)}{x}\\


We will be needing an Integrating factor.


I.F=e2x(x2+1)dx=e2xdx2x2+1dx=e2lnxlnx2+1=elnxelnx2+1=x2x2+1I.F=e^{\int\frac{2}{x(x^2+1)}dx}=e^{\int\frac{2}{x}dx-{\int\frac{2}{x^2+1}dx}}\\ =e^{2\ln x-\ln x^2+1}=\frac{e^{\ln x}}{e^{\ln x^2+1}}=\frac{x^2}{x^2+1}


Multiply through by the I.FI.F


x2x2+1(u+2x(x2+1)u)=x2x2+1(6(x2+1)x)d(ux2x2+1)dx=6x\frac{x^2}{x^2+1}\left(u'+ \frac{2}{x(x^2+1)}u\right)=\frac{x^2}{x^2+1}\left(\frac{6(x^2+1)}{x}\\\right)\\ \frac{d(u\frac{x^2}{x^2+1})}{dx}=6x

Integrate both sides


ux2x2+1=6xdxux2x2+1=3x2+Cu=3(x2+1)+C(x2+1)x2But, u=v.So,u\frac{x^2}{x^2+1}=\int 6xdx\\ u\frac{x^2}{x^2+1}=3x^2+C\\ u=3(x^2+1)+\frac{C(x^2+1)}{x^2}\\ \text{But, } u=v'. \text{So,}

v=3(x2+1)+C(x2+1)x2Integrate both sidesv=x3+3x+C(x21)x+KBut, v=yx. So, y=x4+3x2+C(x21)+Kxy=x4+(3+C)x2+KxCv'=3(x^2+1)+\frac{C(x^2+1)}{x^2}\\ \text{Integrate both sides}\\ v=x^3+3x+\frac{C(x^2-1)}{x}+K\\ \text{But, } v=\frac{y}{x}. \text{ So, }\\ y=x^4+3x^2+C(x^2-1)+Kx\\ y=x^4+(3+C)x^2+Kx-C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS