Question #150978
Simultanius ordinary diff. Eqn dx/x^2-y^2-z^2=dy/2xy=dz/2zx
1
Expert's answer
2020-12-21T19:21:56-0500

dxx2y2z2=dy2xy=dz2zx\frac{dx}{x^2-y^2-z^2}=\frac{dy}{2xy}=\frac{dz}{2zx}


dyy=dzz\frac{dy}{y}=\frac{dz}{z}

lny=ln(c1z)lny=ln(c_1z)

yz=c1\frac{y}{z}=c_1


dxx2(c1z)2z2=dz2zx\frac{dx}{x^2-(c_1z)^2-z^2}=\frac{dz}{2zx}

2zxx2(c1z)2z2=dzdx\frac{2zx}{x^2-(c_1z)^2-z^2}=\frac{dz}{dx}

This is a homogeneous DE.

z=tx,z=tx+tz=tx, z'=t'x+t

tx+t=2tx2x2t2x2(c1+1)=2t1t2(c1+1)t'x+t=\frac{2tx^2}{x^2-t^2x^2(c_1+1)}=\frac{2t}{1-t^2(c_1+1)}

tx=2t1t2(c1+1)t=t+t3(c1+1)1t2(c1+1)t'x=\frac{2t}{1-t^2(c_1+1)}-t=\frac{t+t^3(c_1+1)}{1-t^2(c_1+1)}


1t2(c1+1)t+t3(c1+1)dt=dxx\intop\frac{1-t^2(c_1+1)}{t+t^3(c_1+1)}dt=\intop\frac{dx}{x}


1t2(c1+1)t+t3(c1+1)=1t2(c1+1)t(1+t(c1+1)1/3)(1t(c1+1)1/3+t2(c1+1)2/3)\frac{1-t^2(c_1+1)}{t+t^3(c_1+1)}=\frac{1-t^2(c_1+1)}{t(1+t(c_1+1)^{1/3})(1-t(c_1+1)^{1/3}+t^2(c_1+1)^{2/3})}


1t2(c1+1)t(1+t(c1+1)1/3)(1t(c1+1)1/3+t2(c1+1)2/3)=At+B1+t(c1+1)1/3+Ct+D1t(c1+1)1/3+t2(c1+1)2/3\frac{1-t^2(c_1+1)}{t(1+t(c_1+1)^{1/3})(1-t(c_1+1)^{1/3}+t^2(c_1+1)^{2/3})}=\frac{A}{t}+\frac{B}{1+t(c_1+1)^{1/3}}+\frac{Ct+D}{1-t(c_1+1)^{1/3}+t^2(c_1+1)^{2/3}}


A(1+t3(c1+1))+Bt(1t(c1+1)1/3+t2(c1+1)2/3)+(Ct+D)t(1+t(c1++1)1/3)=1t2(c1+1)A(1+t^3(c_1+1))+Bt(1-t(c_1+1)^{1/3}+t^2(c_1+1)^{2/3})+(Ct+D)t(1+t(c_1++1)^{1/3})=1-t^2(c_1+1)


A+At3(c1+1)+BtBt2(c1+1)1/3+Bt3(c1+1)2/3+Ct2+Ct3(c1+1)1/3+A+At^3(c_1+1)+Bt-Bt^2(c_1+1)^{1/3}+Bt^3(c_1+1)^{2/3}+Ct^2+Ct^3(c_1+1)^{1/3}+

+Dt+Dt2(c1+1)1/3=1t2(c1+1)+Dt+Dt^2(c_1+1)^{1/3}=1-t^2(c_1+1)


A=1A=1

B+D=0B+D=0


Let (c1+1=k3)(c_1+1=k^3) , then:


Bk+C+Dk=k3-Bk+C+Dk=-k^3

C2Bk=k3C-2Bk=-k^3

Ak3+Bk2+Ck=0Ak^3+Bk^2+Ck=0

C=k2BkC=-k^2-Bk

k2Bk2Bk=k3-k^2-Bk-2Bk=-k^3

B=k2k3,D=kk23B=\frac{k^2-k}{3}, D=\frac{k-k^2}{3}

C=2k2k33C=\frac{-2k^2-k^3}{3}


1t2(c1+1)t+t3(c1+1)dt=(1t+k2k3(1+kt)+kk3t(2k2+k3)3(1kt+k2t2))dt\intop\frac{1-t^2(c_1+1)}{t+t^3(c_1+1)}dt=\intop(\frac{1}{t}+\frac{k^2-k}{3(1+kt)}+\frac{k-k^3-t(2k^2+k^3)}{3(1-kt+k^2t^2)})dt


kk3t(2k2+k3)3(1kt+k2t2)dt=k31k2kt(k+2)1kt+k2t2dt=\intop\frac{k-k^3-t(2k^2+k^3)}{3(1-kt+k^2t^2)}dt=\frac{k}{3}\intop\frac{1-k^2-kt(k+2)}{1-kt+k^2t^2}dt=


=k2133arctan2kt3163ln(t2t/k+1/k2)+13k3arctan2kt3=\frac{k^2-1}{3\sqrt{3}}arctan{\frac{2kt}{\sqrt{3}}}-\frac{1}{6\sqrt{3}}ln(t^2-t/k+1/k^2)+\frac{1}{3k\sqrt{3}}arctan{\frac{2kt}{\sqrt{3}}}


lnt+k13ln(1+kt)+k2133arctan2kt3163ln(t2t/k+1/k2)+13k3arctan2kt3=lnt+\frac{k-1}{3}ln(1+kt)+\frac{k^2-1}{3\sqrt{3}}arctan{\frac{2kt}{\sqrt{3}}}-\frac{1}{6\sqrt{3}}ln(t^2-t/k+1/k^2)+\frac{1}{3k\sqrt{3}}arctan{\frac{2kt}{\sqrt{3}}}=

=lnx+c2=lnx+c_2


ln(z/x)+k13ln(1+kz/x)+k2133arctan2kzx3163ln((z/x)2z/(kx)+1/k2)++13k3arctan2kzx3lnx=c2ln(z/x)+\frac{k-1}{3}ln(1+kz/x)+\frac{k^2-1}{3\sqrt{3}}arctan{\frac{2kz}{x\sqrt{3}}}-\frac{1}{6\sqrt{3}}ln((z/x)^2-z/(kx)+1/k^2)++\frac{1}{3k\sqrt{3}}arctan{\frac{2kz}{x\sqrt{3}}}-lnx=c_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
24.12.20, 16:44

Dear Sachin kumar, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Sachin kumar
24.12.20, 16:22

Thanks for answer.it is good work

LATEST TUTORIALS
APPROVED BY CLIENTS