"\\frac{dx}{x^2-y^2-z^2}=\\frac{dy}{2xy}=\\frac{dz}{2zx}"
"\\frac{dy}{y}=\\frac{dz}{z}"
"lny=ln(c_1z)"
"\\frac{y}{z}=c_1"
"\\frac{dx}{x^2-(c_1z)^2-z^2}=\\frac{dz}{2zx}"
"\\frac{2zx}{x^2-(c_1z)^2-z^2}=\\frac{dz}{dx}"
This is a homogeneous DE.
"z=tx, z'=t'x+t"
"t'x+t=\\frac{2tx^2}{x^2-t^2x^2(c_1+1)}=\\frac{2t}{1-t^2(c_1+1)}"
"t'x=\\frac{2t}{1-t^2(c_1+1)}-t=\\frac{t+t^3(c_1+1)}{1-t^2(c_1+1)}"
"\\intop\\frac{1-t^2(c_1+1)}{t+t^3(c_1+1)}dt=\\intop\\frac{dx}{x}"
"\\frac{1-t^2(c_1+1)}{t+t^3(c_1+1)}=\\frac{1-t^2(c_1+1)}{t(1+t(c_1+1)^{1\/3})(1-t(c_1+1)^{1\/3}+t^2(c_1+1)^{2\/3})}"
"\\frac{1-t^2(c_1+1)}{t(1+t(c_1+1)^{1\/3})(1-t(c_1+1)^{1\/3}+t^2(c_1+1)^{2\/3})}=\\frac{A}{t}+\\frac{B}{1+t(c_1+1)^{1\/3}}+\\frac{Ct+D}{1-t(c_1+1)^{1\/3}+t^2(c_1+1)^{2\/3}}"
"A(1+t^3(c_1+1))+Bt(1-t(c_1+1)^{1\/3}+t^2(c_1+1)^{2\/3})+(Ct+D)t(1+t(c_1++1)^{1\/3})=1-t^2(c_1+1)"
"A+At^3(c_1+1)+Bt-Bt^2(c_1+1)^{1\/3}+Bt^3(c_1+1)^{2\/3}+Ct^2+Ct^3(c_1+1)^{1\/3}+"
"+Dt+Dt^2(c_1+1)^{1\/3}=1-t^2(c_1+1)"
"A=1"
"B+D=0"
Let "(c_1+1=k^3)" , then:
"-Bk+C+Dk=-k^3"
"C-2Bk=-k^3"
"Ak^3+Bk^2+Ck=0"
"C=-k^2-Bk"
"-k^2-Bk-2Bk=-k^3"
"B=\\frac{k^2-k}{3}, D=\\frac{k-k^2}{3}"
"C=\\frac{-2k^2-k^3}{3}"
"\\intop\\frac{1-t^2(c_1+1)}{t+t^3(c_1+1)}dt=\\intop(\\frac{1}{t}+\\frac{k^2-k}{3(1+kt)}+\\frac{k-k^3-t(2k^2+k^3)}{3(1-kt+k^2t^2)})dt"
"\\intop\\frac{k-k^3-t(2k^2+k^3)}{3(1-kt+k^2t^2)}dt=\\frac{k}{3}\\intop\\frac{1-k^2-kt(k+2)}{1-kt+k^2t^2}dt="
"=\\frac{k^2-1}{3\\sqrt{3}}arctan{\\frac{2kt}{\\sqrt{3}}}-\\frac{1}{6\\sqrt{3}}ln(t^2-t\/k+1\/k^2)+\\frac{1}{3k\\sqrt{3}}arctan{\\frac{2kt}{\\sqrt{3}}}"
"lnt+\\frac{k-1}{3}ln(1+kt)+\\frac{k^2-1}{3\\sqrt{3}}arctan{\\frac{2kt}{\\sqrt{3}}}-\\frac{1}{6\\sqrt{3}}ln(t^2-t\/k+1\/k^2)+\\frac{1}{3k\\sqrt{3}}arctan{\\frac{2kt}{\\sqrt{3}}}="
"=lnx+c_2"
"ln(z\/x)+\\frac{k-1}{3}ln(1+kz\/x)+\\frac{k^2-1}{3\\sqrt{3}}arctan{\\frac{2kz}{x\\sqrt{3}}}-\\frac{1}{6\\sqrt{3}}ln((z\/x)^2-z\/(kx)+1\/k^2)++\\frac{1}{3k\\sqrt{3}}arctan{\\frac{2kz}{x\\sqrt{3}}}-lnx=c_2"
Comments
Dear Sachin kumar, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thanks for answer.it is good work
Leave a comment