d x x 2 − y 2 − z 2 = d y 2 x y = d z 2 z x \frac{dx}{x^2-y^2-z^2}=\frac{dy}{2xy}=\frac{dz}{2zx} x 2 − y 2 − z 2 d x = 2 x y d y = 2 z x d z
d y y = d z z \frac{dy}{y}=\frac{dz}{z} y d y = z d z
l n y = l n ( c 1 z ) lny=ln(c_1z) l n y = l n ( c 1 z )
y z = c 1 \frac{y}{z}=c_1 z y = c 1
d x x 2 − ( c 1 z ) 2 − z 2 = d z 2 z x \frac{dx}{x^2-(c_1z)^2-z^2}=\frac{dz}{2zx} x 2 − ( c 1 z ) 2 − z 2 d x = 2 z x d z
2 z x x 2 − ( c 1 z ) 2 − z 2 = d z d x \frac{2zx}{x^2-(c_1z)^2-z^2}=\frac{dz}{dx} x 2 − ( c 1 z ) 2 − z 2 2 z x = d x d z
This is a homogeneous DE.
z = t x , z ′ = t ′ x + t z=tx, z'=t'x+t z = t x , z ′ = t ′ x + t
t ′ x + t = 2 t x 2 x 2 − t 2 x 2 ( c 1 + 1 ) = 2 t 1 − t 2 ( c 1 + 1 ) t'x+t=\frac{2tx^2}{x^2-t^2x^2(c_1+1)}=\frac{2t}{1-t^2(c_1+1)} t ′ x + t = x 2 − t 2 x 2 ( c 1 + 1 ) 2 t x 2 = 1 − t 2 ( c 1 + 1 ) 2 t
t ′ x = 2 t 1 − t 2 ( c 1 + 1 ) − t = t + t 3 ( c 1 + 1 ) 1 − t 2 ( c 1 + 1 ) t'x=\frac{2t}{1-t^2(c_1+1)}-t=\frac{t+t^3(c_1+1)}{1-t^2(c_1+1)} t ′ x = 1 − t 2 ( c 1 + 1 ) 2 t − t = 1 − t 2 ( c 1 + 1 ) t + t 3 ( c 1 + 1 )
∫ 1 − t 2 ( c 1 + 1 ) t + t 3 ( c 1 + 1 ) d t = ∫ d x x \intop\frac{1-t^2(c_1+1)}{t+t^3(c_1+1)}dt=\intop\frac{dx}{x} ∫ t + t 3 ( c 1 + 1 ) 1 − t 2 ( c 1 + 1 ) d t = ∫ x d x
1 − t 2 ( c 1 + 1 ) t + t 3 ( c 1 + 1 ) = 1 − t 2 ( c 1 + 1 ) t ( 1 + t ( c 1 + 1 ) 1 / 3 ) ( 1 − t ( c 1 + 1 ) 1 / 3 + t 2 ( c 1 + 1 ) 2 / 3 ) \frac{1-t^2(c_1+1)}{t+t^3(c_1+1)}=\frac{1-t^2(c_1+1)}{t(1+t(c_1+1)^{1/3})(1-t(c_1+1)^{1/3}+t^2(c_1+1)^{2/3})} t + t 3 ( c 1 + 1 ) 1 − t 2 ( c 1 + 1 ) = t ( 1 + t ( c 1 + 1 ) 1/3 ) ( 1 − t ( c 1 + 1 ) 1/3 + t 2 ( c 1 + 1 ) 2/3 ) 1 − t 2 ( c 1 + 1 )
1 − t 2 ( c 1 + 1 ) t ( 1 + t ( c 1 + 1 ) 1 / 3 ) ( 1 − t ( c 1 + 1 ) 1 / 3 + t 2 ( c 1 + 1 ) 2 / 3 ) = A t + B 1 + t ( c 1 + 1 ) 1 / 3 + C t + D 1 − t ( c 1 + 1 ) 1 / 3 + t 2 ( c 1 + 1 ) 2 / 3 \frac{1-t^2(c_1+1)}{t(1+t(c_1+1)^{1/3})(1-t(c_1+1)^{1/3}+t^2(c_1+1)^{2/3})}=\frac{A}{t}+\frac{B}{1+t(c_1+1)^{1/3}}+\frac{Ct+D}{1-t(c_1+1)^{1/3}+t^2(c_1+1)^{2/3}} t ( 1 + t ( c 1 + 1 ) 1/3 ) ( 1 − t ( c 1 + 1 ) 1/3 + t 2 ( c 1 + 1 ) 2/3 ) 1 − t 2 ( c 1 + 1 ) = t A + 1 + t ( c 1 + 1 ) 1/3 B + 1 − t ( c 1 + 1 ) 1/3 + t 2 ( c 1 + 1 ) 2/3 Ct + D
A ( 1 + t 3 ( c 1 + 1 ) ) + B t ( 1 − t ( c 1 + 1 ) 1 / 3 + t 2 ( c 1 + 1 ) 2 / 3 ) + ( C t + D ) t ( 1 + t ( c 1 + + 1 ) 1 / 3 ) = 1 − t 2 ( c 1 + 1 ) A(1+t^3(c_1+1))+Bt(1-t(c_1+1)^{1/3}+t^2(c_1+1)^{2/3})+(Ct+D)t(1+t(c_1++1)^{1/3})=1-t^2(c_1+1) A ( 1 + t 3 ( c 1 + 1 )) + Bt ( 1 − t ( c 1 + 1 ) 1/3 + t 2 ( c 1 + 1 ) 2/3 ) + ( Ct + D ) t ( 1 + t ( c 1 + + 1 ) 1/3 ) = 1 − t 2 ( c 1 + 1 )
A + A t 3 ( c 1 + 1 ) + B t − B t 2 ( c 1 + 1 ) 1 / 3 + B t 3 ( c 1 + 1 ) 2 / 3 + C t 2 + C t 3 ( c 1 + 1 ) 1 / 3 + A+At^3(c_1+1)+Bt-Bt^2(c_1+1)^{1/3}+Bt^3(c_1+1)^{2/3}+Ct^2+Ct^3(c_1+1)^{1/3}+ A + A t 3 ( c 1 + 1 ) + Bt − B t 2 ( c 1 + 1 ) 1/3 + B t 3 ( c 1 + 1 ) 2/3 + C t 2 + C t 3 ( c 1 + 1 ) 1/3 +
+ D t + D t 2 ( c 1 + 1 ) 1 / 3 = 1 − t 2 ( c 1 + 1 ) +Dt+Dt^2(c_1+1)^{1/3}=1-t^2(c_1+1) + D t + D t 2 ( c 1 + 1 ) 1/3 = 1 − t 2 ( c 1 + 1 )
A = 1 A=1 A = 1
B + D = 0 B+D=0 B + D = 0
Let ( c 1 + 1 = k 3 ) (c_1+1=k^3) ( c 1 + 1 = k 3 ) , then:
− B k + C + D k = − k 3 -Bk+C+Dk=-k^3 − B k + C + D k = − k 3
C − 2 B k = − k 3 C-2Bk=-k^3 C − 2 B k = − k 3
A k 3 + B k 2 + C k = 0 Ak^3+Bk^2+Ck=0 A k 3 + B k 2 + C k = 0
C = − k 2 − B k C=-k^2-Bk C = − k 2 − B k
− k 2 − B k − 2 B k = − k 3 -k^2-Bk-2Bk=-k^3 − k 2 − B k − 2 B k = − k 3
B = k 2 − k 3 , D = k − k 2 3 B=\frac{k^2-k}{3}, D=\frac{k-k^2}{3} B = 3 k 2 − k , D = 3 k − k 2
C = − 2 k 2 − k 3 3 C=\frac{-2k^2-k^3}{3} C = 3 − 2 k 2 − k 3
∫ 1 − t 2 ( c 1 + 1 ) t + t 3 ( c 1 + 1 ) d t = ∫ ( 1 t + k 2 − k 3 ( 1 + k t ) + k − k 3 − t ( 2 k 2 + k 3 ) 3 ( 1 − k t + k 2 t 2 ) ) d t \intop\frac{1-t^2(c_1+1)}{t+t^3(c_1+1)}dt=\intop(\frac{1}{t}+\frac{k^2-k}{3(1+kt)}+\frac{k-k^3-t(2k^2+k^3)}{3(1-kt+k^2t^2)})dt ∫ t + t 3 ( c 1 + 1 ) 1 − t 2 ( c 1 + 1 ) d t = ∫ ( t 1 + 3 ( 1 + k t ) k 2 − k + 3 ( 1 − k t + k 2 t 2 ) k − k 3 − t ( 2 k 2 + k 3 ) ) d t
∫ k − k 3 − t ( 2 k 2 + k 3 ) 3 ( 1 − k t + k 2 t 2 ) d t = k 3 ∫ 1 − k 2 − k t ( k + 2 ) 1 − k t + k 2 t 2 d t = \intop\frac{k-k^3-t(2k^2+k^3)}{3(1-kt+k^2t^2)}dt=\frac{k}{3}\intop\frac{1-k^2-kt(k+2)}{1-kt+k^2t^2}dt= ∫ 3 ( 1 − k t + k 2 t 2 ) k − k 3 − t ( 2 k 2 + k 3 ) d t = 3 k ∫ 1 − k t + k 2 t 2 1 − k 2 − k t ( k + 2 ) d t =
= k 2 − 1 3 3 a r c t a n 2 k t 3 − 1 6 3 l n ( t 2 − t / k + 1 / k 2 ) + 1 3 k 3 a r c t a n 2 k t 3 =\frac{k^2-1}{3\sqrt{3}}arctan{\frac{2kt}{\sqrt{3}}}-\frac{1}{6\sqrt{3}}ln(t^2-t/k+1/k^2)+\frac{1}{3k\sqrt{3}}arctan{\frac{2kt}{\sqrt{3}}} = 3 3 k 2 − 1 a rc t an 3 2 k t − 6 3 1 l n ( t 2 − t / k + 1/ k 2 ) + 3 k 3 1 a rc t an 3 2 k t
l n t + k − 1 3 l n ( 1 + k t ) + k 2 − 1 3 3 a r c t a n 2 k t 3 − 1 6 3 l n ( t 2 − t / k + 1 / k 2 ) + 1 3 k 3 a r c t a n 2 k t 3 = lnt+\frac{k-1}{3}ln(1+kt)+\frac{k^2-1}{3\sqrt{3}}arctan{\frac{2kt}{\sqrt{3}}}-\frac{1}{6\sqrt{3}}ln(t^2-t/k+1/k^2)+\frac{1}{3k\sqrt{3}}arctan{\frac{2kt}{\sqrt{3}}}= l n t + 3 k − 1 l n ( 1 + k t ) + 3 3 k 2 − 1 a rc t an 3 2 k t − 6 3 1 l n ( t 2 − t / k + 1/ k 2 ) + 3 k 3 1 a rc t an 3 2 k t =
= l n x + c 2 =lnx+c_2 = l n x + c 2
l n ( z / x ) + k − 1 3 l n ( 1 + k z / x ) + k 2 − 1 3 3 a r c t a n 2 k z x 3 − 1 6 3 l n ( ( z / x ) 2 − z / ( k x ) + 1 / k 2 ) + + 1 3 k 3 a r c t a n 2 k z x 3 − l n x = c 2 ln(z/x)+\frac{k-1}{3}ln(1+kz/x)+\frac{k^2-1}{3\sqrt{3}}arctan{\frac{2kz}{x\sqrt{3}}}-\frac{1}{6\sqrt{3}}ln((z/x)^2-z/(kx)+1/k^2)++\frac{1}{3k\sqrt{3}}arctan{\frac{2kz}{x\sqrt{3}}}-lnx=c_2 l n ( z / x ) + 3 k − 1 l n ( 1 + k z / x ) + 3 3 k 2 − 1 a rc t an x 3 2 k z − 6 3 1 l n (( z / x ) 2 − z / ( k x ) + 1/ k 2 ) + + 3 k 3 1 a rc t an x 3 2 k z − l n x = c 2
Comments
Dear Sachin kumar, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thanks for answer.it is good work