Question #150895

Find the general solution to the given system:

dx/dt=x+2y

dy/dt=2x+y


1
Expert's answer
2020-12-15T03:33:23-0500

Let us find the general solution to the given system:


{dxdt=x+2ydydt=2x+y\begin{cases} \frac{dx}{dt}=x+2y\\ \frac{dy}{dt}=2x+y \end{cases}


The first equation of the system is equivalent to y=12(dxdtx)y=\frac{1}{2}(\frac{dx}{dt}-x). Then dydt=12(d2xdt2dxdt)\frac{dy}{dt}=\frac{1}{2}(\frac{d^2x}{dt^2}-\frac{dx}{dt}). Put these in the second equation of the system. We have the following differential equation:


12(d2xdt2dxdt)=2x+12(dxdtx)\frac{1}{2}(\frac{d^2x}{dt^2}-\frac{dx}{dt})=2x+\frac{1}{2}(\frac{dx}{dt}-x)


which is equivalent to


12d2xdt2dxdt32x=0\frac{1}{2}\frac{d^2x}{dt^2}-\frac{dx}{dt}-\frac{3}{2}x=0


and to


d2xdt22dxdt3x=0\frac{d^2x}{dt^2}-2\frac{dx}{dt}-3x=0


Its characteristic equation k22k3=0k^2-2k-3=0 is equivalent to (k+1)(k3)=0(k+1)(k-3)=0, and thus has the solutions k1=1k_1=-1 and k2=3.k_2=3.


Therefore, x(t)=C1et+C2e3tx(t)=C_1e^{-t}+C_2e^{3t}.


Then dxdt=C1et+3C2e3t\frac{dx}{dt}=-C_1e^{-t}+3C_2e^{3t} and


y=12(dxdtx)=12(C1et+3C2e3t(C1et+C2e3t))=C1et+C2e3ty=\frac{1}{2}(\frac{dx}{dt}-x)=\frac{1}{2}(-C_1e^{-t}+3C_2e^{3t}-(C_1e^{-t}+C_2e^{3t}))=-C_1e^{-t}+C_2e^{3t} .


Consequently, the system has the general solution:


{x(t)=C1et+C2e3ty(t)=C1et+C2e3t\begin{cases} x(t)=C_1e^{-t}+C_2e^{3t}\\ y(t)=-C_1e^{-t}+C_2e^{3t} \end{cases}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.07.21, 21:35

Dear Maria, please use the panel for submitting a new question.


Maria
05.06.21, 09:41

Solve the following system of linear equations dx/dt=2x+y+e' dy/dt=3x+y+3e'

LATEST TUTORIALS
APPROVED BY CLIENTS