2) We need to transform it into linear ODEObserve the exponent of y, it's n=2. So we'll use substitution v=y1−n=y1−2=y−1 3) So we havev=y1v′=(y1)′v′=−(y21)y′=−v2y′ In (*) substitute y′=−(v21)v′ and y=v1v2−v+xv1+x2v21=0 .... (**) this is a first-order linear ODE.4) New substitutionv = x uwhere u=u(x) and that's all we need to know about "u" for nowv' = xu' + uback to (**)−x2u2(xu′+u)+x2u1+(x4u2)1=0 or expanded−xu2u′−x2u1+(x2u)1+(x4u2)1=0 5) Solve for u' two middle terms are canceled:−(xu2)u′+(x4u2)1=0 multiply by xu²−u′+x31=0u′=x31 6) Integrate with respect to xu=∫(x31)dxu=−2x21+C
7) Substitute back u=xvxv=−2x21+C 8) Multiply by xv=−2x1+Cx 9) Substitute back v=y1y1=−(2x)1+Cxy1=−(2x)1+2x2Cx2=2x(2Cx2−1)
y=2Cx2−12x
Since C is constant, for simplicity of solution we can introduce a new constantC₁ = 2C so finallyy=(C1x2−1)2x
Comments