Question #150871
Solve the given homogeneous differential equation
X2dy+y(x+y)dx=0
1
Expert's answer
2020-12-16T14:52:28-0500

x2dy+y(x+y)dx=0x^2dy+y(x+y)dx=0
1) Expand:x² dy+yx dx +y² dx = 0ory+yx+y2x2=0y'+ \dfrac{y}{x}+ \dfrac{y^2}{x^2}=0 .....(*)   first-order nonlinear ODE.


2) We need to transform it into linear ODEObserve the exponent of y, it's n=2. So we'll use substitution v=y1n=y12=y1v=y^{1-n}=y^{1-2}=y^{-1}
3) So we havev=1yv= \dfrac{1}{y} v=(1y)v'= (\dfrac{1}{y}) ' v=(1y2)y=v2yv'=-( \dfrac{1}{y^2} )y'=-v^2y' In (*) substitute y=(1v2)vy'=-( \dfrac{1}{v^2} )v' and y=1vy= \dfrac{1}{v} vv2+1xv+1x2v2=0\dfrac{-v}{v^2} + \dfrac{1}{xv}+ \dfrac{1}{x^2v^2}=0 .... (**)
this is a first-order linear ODE.4) New substitutionv = x uwhere u=u(x) and that's all we need to know about "u" for nowv' = xu' + uback to (**)(xu+u)x2u2+1x2u+1(x4u2)=0- \dfrac{(xu'+u)}{x^2u^2} + \dfrac{1}{x^2u} + \dfrac{1}{(x^4u^2)} =0 or expandeduxu21x2u+1(x2u)+1(x4u2)=0- \dfrac{u'}{xu^2} - \dfrac{1}{x^2u} +\dfrac{1}{(x^2u)}+ \dfrac{1}{(x^4u^2)} =0 5) Solve for u' 
two middle terms are canceled:u(xu2)+1(x4u2)=0-\dfrac{u'}{(xu^2)}+\dfrac{1}{(x^4u^2)}=0
multiply by xu²u+1x3=0-u'+ \dfrac{1}{x^3} =0 u=1x3u'= \dfrac{1}{x^3}
6) Integrate with respect to xu=(1x3)dxu=\int( \dfrac{1}{x^3} )dx u=12x2+Cu=- \dfrac{1}{2x^2}+C


7) Substitute back u=vxu= \dfrac{v}{x} vx=12x2+C\dfrac{v}{x} =- \dfrac{1}{2x^2}+C
8) Multiply by xv=12x+Cxv=- \dfrac{1}{2x}+Cx 9) Substitute back v=1yv= \dfrac{1}{y} 1y=1(2x)+Cx\dfrac{1}{y} =- \dfrac{1}{(2x)}+Cx 1y=1(2x)+2Cx22x=(2Cx21)2x\dfrac{1}{y} =- \dfrac{1}{(2x)}+ \dfrac{2Cx^2}{2x}= \dfrac{(2Cx^2-1)}{2x}

y=2x2Cx21y= \dfrac{2x}{2Cx^2-1}

Since C is constant, for simplicity of solution we can introduce a new constantC₁ = 2C so finallyy=2x(C1x21)y= \dfrac{2x}{(C_1x^2-1)}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS