Question #150169
(2x+3y)dx-4(x+1)dy=0
1
Expert's answer
2020-12-11T11:49:04-0500

Let us solve the differential equation (2x+3y)dx4(x+1)dy=0(2x+3y)dx-4(x+1)dy=0. It follows that x=1x=-1 is a solution. Further, we will assume that x1x\ne -1. So, in this case the equation is equivalent to the equation


dydx=2x+3y4(x+1)\frac{dy}{dx}=\frac{2x+3y}{4(x+1)}.


Let us solve the system {2x+3y=0x+1=0\begin{cases}2x+3y=0\\x+1=0\end{cases} which is equivalent to {x=1y=23\begin{cases}x=-1\\y=\frac{2}{3}\end{cases}.


Let us introduce a substitution {x=t1y=z+23\begin{cases}x=t-1\\y=z+\frac{2}{3}\end{cases}.


Then we have he differential equation dzdt=2(t1)+3(z+23)4(t1+1)=2t+3z4t\frac{dz}{dt}=\frac{2(t-1)+3(z+\frac{2}{3})}{4(t-1+1)}=\frac{2t+3z}{4t}.


Let us introduce a substitution z=tu(t)z=t\cdot u(t). Then dz=udt+tdudz=u\cdot dt+t\cdot du and thus


udt+tdudt=2t+3tu4t=2+3u4\frac{u\cdot dt+t\cdot du}{dt}=\frac{2t+3tu}{4t}= \frac{2+3u}{4}


u+tdudt=2+3u4u+t\frac{du}{dt}= \frac{2+3u}{4}


tdudt=2+3u4u=2u4t\frac{du}{dt}= \frac{2+3u}{4}-u=\frac{2-u}{4}


If u=2u=2, then z=2tz=2t, y23=2x+2y-\frac{2}{3}=2x+2, and therefore, y=2x+2+23=2x+83y=2x+2+\frac{2}{3}=2x+\frac{8}{3}. Since (2x+3y)dx4(x+1)dy=(2x+3(2x+83))dx4(x+1)2dx=(8x+8)dx8(x+1)dx=0,(2x+3y)dx-4(x+1)dy=(2x+3(2x+\frac{8}{3}))dx-4(x+1)2dx=(8x+8)dx-8(x+1)dx=0, we conclude that y=2x+83y=2x+\frac{8}{3} is a solution of the differential equation.


Let u2u\ne 2. Then


4du2u=dtt\frac{4du}{2-u} =\frac{dt}{t}


4du2u=dtt\int\frac{4du}{2-u} =\int\frac{dt}{t}


4ln2u+lnC=lnt-4\ln|2-u|+\ln|C|=\ln|t|


lnC=lnt+ln(2u)4=lnt(2u)4\ln|C|=\ln|t|+ \ln(2-u)^4=\ln|t(2-u)^4|


t(2u)4=Ct(2-u)^4=C


t(2zt)4=Ct(2-\frac{z}{t})^4=C


(x+1)(2y23x+1)4=C(x+1)(2-\frac{y-\frac{2}{3}}{x+1})^4=C


(x+1)(2xy+83x+1)4=C(x+1)(\frac{2x-y+\frac{8}{3}}{x+1})^4=C


(2xy+83)4=C(x+1)3(2x-y+\frac{8}{3})^4=C(x+1)^3


If C=0C=0, then we have the solution y=2x+83y=2x+\frac{8}{3}.


Therefore, we have the following solution of the differentail equation (2x+3y)dx4(x+1)dy=0(2x+3y)dx-4(x+1)dy=0:


(2xy+83)4=C(x+1)3(2x-y+\frac{8}{3})^4=C(x+1)^3 and x=1.x=-1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS