ydx+(x−y+x−2y)dy=0ydx+(2x−3y)dy=0ydx+(2x−3y)dy=0dxdy=3y−2xydxdy=3−2xydxdy+2xy=3 as a linear formIntegrating factor (IF)=e∫2y dy=e2lny=eln(y2)=y2dxdy+2xy=3xIF=∫3IF dyxy2=∫3y2 dyxy3=y3+Cx=1+Cy−3 is the solution to the ODE\displaystyle y\mathrm{d}x+ (x-y+x-2y)\mathrm{d}y =0 \\ y\mathrm{d}x+ (2x - 3y)\mathrm{d}y =0 \\ y\mathrm{d}x+ (2x - 3y)\mathrm{d}y =0 \\ \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{3y - 2x}{y}\\ \frac{\mathrm{d}x}{\mathrm{d}y} = 3 - \frac{2x}{y}\\ \frac{\mathrm{d}x}{\mathrm{d}y} + \frac{2x}{y} = 3\, \textsf{as a linear form}\\ \textsf{Integrating factor}\,\, (IF) = e^{\int \frac{2}{y}\,\mathrm{d}y} = e^{2\ln{y}} = e^{\ln(y^2)} = y^2\\ \frac{\mathrm{d}x}{\mathrm{d}y} + \frac{2x}{y} = 3\\ xIF = \int 3 IF\, \mathrm{d}y\\ xy^2 = \int 3y^2 \, \mathrm{d}y\\ xy^3 = y^3 + C\\ x = 1 + Cy^{-3}\, \textsf{is the solution to the ODE}ydx+(x−y+x−2y)dy=0ydx+(2x−3y)dy=0ydx+(2x−3y)dy=0dydx=y3y−2xdydx=3−y2xdydx+y2x=3as a linear formIntegrating factor(IF)=e∫y2dy=e2lny=eln(y2)=y2dydx+y2x=3xIF=∫3IFdyxy2=∫3y2dyxy3=y3+Cx=1+Cy−3is the solution to the ODE
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments