2x(y+z2)p+(2y+z2)q=z3The lagrange auxiliary equation is2x(y+z2)dx=2y+z2dy=z3dzChoosing multipliers(x1,−1,−z1)∫xdx−∫dy−∫zdz=0∫xdx−∫dy=∫zdzlnx−y−C=lnzln(zx)=y+Czx=Aey,x=AzeyComparing the last two equations2y+z2dy=z3dzdzdy=z32y+z2dzdy=z32y+z1dzdy−z32y=z1Integration Factor(IF)=e−∫z32dz=ez21y⋅IF=∫zIFdzyez21=∫zez21dzLetu=z21,−2z3du=dzyez21=∫zeu⋅−2z3duyez21=∫eu⋅−2z2duyez21=2−1∫ueuduThe integral on the right sidecan be written in termsof the the exponential integralEi(u)yez21=2−1∫0utetdtyez21=2−Ei(u)y=2−ez2−1Ei(u)y=2−ez2−1Ei(z21)Therefore, the solution to PDE isx=Azey,y=2−ez2−1Ei(z21)
Comments