Question #149656
2x(y+z^2)p+(2y+z^2)q=z^3
1
Expert's answer
2020-12-10T14:00:33-0500

2x(y+z2)p+(2y+z2)q=z3The lagrange auxiliary equation isdx2x(y+z2)=dy2y+z2=dzz3Choosing multipliers(1x,1,1z)dxxdydzz=0dxxdy=dzzlnxyC=lnzln(xz)=y+Cxz=Aey,x=AzeyComparing the last two equationsdy2y+z2=dzz3dydz=2y+z2z3dydz=2yz3+1zdydz2yz3=1zIntegration Factor(IF)=e2z3dz=e1z2yIF=IFzdzye1z2=e1z2zdzLetu=1z2,z32du=dzye1z2=euzz32duye1z2=euz22duye1z2=12euuduThe integral on the right sidecan be written in termsof the the exponential integralEi(u)ye1z2=120uettdtye1z2=Ei(u)2y=e1z2Ei(u)2y=e1z2Ei(1z2)2Therefore, the solution to PDE isx=Azey,y=e1z2Ei(1z2)2\displaystyle 2x(y+z^2)p+(2y+z^2)q=z^3\\ \textsf{The lagrange auxiliary equation is}\\ \frac{\mathrm{d}x}{2x(y + z^2)} = \frac{\mathrm{d}y}{2y + z^2} = \frac{\mathrm{d}z}{z^3}\\ \textsf{Choosing multipliers}\,\,\left(\frac{1}{x}, -1, -\frac{1}{z}\right)\\ \int\frac{\mathrm{d}x}{x} - \int\mathrm{d}y - \int\frac{\mathrm{d}z}{z} = 0\\ \int\frac{\mathrm{d}x}{x} - \int\mathrm{d}y = \int\frac{\mathrm{d}z}{z} \\ \ln{x} - y - C = \ln{z}\\ \ln\left(\frac{x}{z}\right) = y + C\\ \frac{x}{z} = Ae^{y}, x = Aze^{y}\\ \textsf{Comparing the last two equations}\\ \frac{\mathrm{d}y}{2y + z^2} = \frac{\mathrm{d}z}{z^3}\\ \frac{\mathrm{d}y}{\mathrm{d}z} =\frac{2y + z^2}{z^3}\\ \frac{\mathrm{d}y}{\mathrm{d}z} =\frac{2y}{z^3} + \frac{1}{z}\\ \frac{\mathrm{d}y}{\mathrm{d}z} - \frac{2y}{z^3} = \frac{1}{z}\\ \textsf{Integration Factor}\,(IF) = e^{-\int \frac{2}{z^3}\, \mathrm{d}z} = e^{\frac{1}{z^2}}\\ y\cdot IF = \int \frac{IF}{z}\,\mathrm{d}z\\ ye^{\frac{1}{z^2}} = \int \frac{e^{\frac{1}{z^2}}}{z} \,\mathrm{d}z\\ \textsf{Let}\,\, u = \frac{1}{z^2}, -\frac{z^3}{2}\mathrm{d}u = \mathrm{d}z\\ ye^{\frac{1}{z^2}} = \int \frac{e^{u}}{z} \cdot -\frac{z^3}{2}\mathrm{d}u \\ ye^{\frac{1}{z^2}} = \int e^u\cdot -\frac{z^2}{2}\mathrm{d}u \\ ye^{\frac{1}{z^2}} = \frac{-1}{2}\int \frac{e^u}{u}\,\mathrm{d}u \\ \textsf{The integral on the right side}\\ \textsf{can be written in terms}\\ \textsf{of the the exponential integral}\,\, \mathrm{Ei}(u)\\ ye^{\frac{1}{z^2}} = \frac{-1}{2}\int_0^u \frac{e^t}{t}\,\mathrm{d}t \\ ye^{\frac{1}{z^2}} = \frac{-\mathrm{Ei}(u)}{2}\,\, y = \frac{-e^{\frac{-1}{z^2}}\mathrm{Ei}(u)}{2}\\ y = \frac{-e^{\frac{-1}{z^2}}\mathrm{Ei}\left(\frac{1}{z^2}\right)}{2}\\ \textsf{Therefore, the solution to PDE is}\,\,\\ x = Aze^{y}, y = \frac{-e^{\frac{-1}{z^2}}\mathrm{Ei}\left(\frac{1}{z^2}\right)}{2}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS