dydx=−x+2y−32x+y−3(2x+y−3)dy+(x+2y−3)dx=0Mdy+Ndx=0Mx=∂M∂x=2Nx=∂N∂y=2Since My=Nx the differential equation is exact∂z∂y=2x+y−3z=∫(2x+y−3) dyz=2xy+y22−3y+f(x)∂z∂x=x+2y−3z=∫(x+2y−3) dxz=x22+2xy−3x+f(y)z=2xy+x2+y22−3(x+y)\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x + 2y - 3}{2x + y - 3}\\ (2x + y - 3)\mathrm{d}y + (x + 2y - 3)\mathrm{d}x = 0\\ M\mathrm{d}y + N\mathrm{d}x = 0\\ M_x = \frac{\partial M}{\partial x} = 2\\ N_x = \frac{\partial N}{\partial y} = 2\\ \textsf{Since}\,\, M_y = N_x\,\,\textsf{the differential equation is exact}\\ \frac{\partial z}{\partial y} = 2x + y - 3\\ z = \int(2x + y - 3)\, \mathrm{d}y\\ z = 2xy + \frac{y^2}{2} - 3y + f(x)\\ \frac{\partial z}{\partial x} = x + 2y - 3\\ z = \int (x + 2y - 3)\,\mathrm{d}x\\ z = \frac{x^2}{2} + 2xy - 3x + f(y)\\ z = 2xy + \frac{x^2 + y^2}{2} - 3(x + y)dxdy=−2x+y−3x+2y−3(2x+y−3)dy+(x+2y−3)dx=0Mdy+Ndx=0Mx=∂x∂M=2Nx=∂y∂N=2SinceMy=Nxthe differential equation is exact∂y∂z=2x+y−3z=∫(2x+y−3)dyz=2xy+2y2−3y+f(x)∂x∂z=x+2y−3z=∫(x+2y−3)dxz=2x2+2xy−3x+f(y)z=2xy+2x2+y2−3(x+y)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments