Let's introduce the substitution
y(x)=x⋅u(x)→y′(x)=u(x)+x⋅u′(x)⟶u(x)+x⋅u′(x)=xx⋅u(x)+tan(xx⋅u(x))⟶x⋅u′(x)=u(x)−u(x)+tan(u(x))⟶x⋅dxdu(x)=tan(u(x))∣∣×x⋅tan(u(x))dx⟶cos(u(x))sin(u(x))du(x)=xdx→sin(u(x))cos(u(x))du(x)=xdx⟶∫sin(u(x))d(sin(u(x)))=∫xdx→ln∣sin(u(x))∣=ln∣x∣+ln∣C∣eln∣sin(u(x))∣=eln∣Cx∣→sin(u(x))=Cx→u(x)=arcsin(Cx)y(x)=x⋅u(x)=x⋅arcsin(Cx)
ANSWER
y(x)=x⋅arcsin(Cx)
Comments