Let's introduce the substitution
y ( x ) = x ⋅ u ( x ) → y ′ ( x ) = u ( x ) + x ⋅ u ′ ( x ) ⟶ u ( x ) + x ⋅ u ′ ( x ) = x ⋅ u ( x ) x + tan ( x ⋅ u ( x ) x ) ⟶ x ⋅ u ′ ( x ) = u ( x ) − u ( x ) + tan ( u ( x ) ) ⟶ x ⋅ d u ( x ) d x = tan ( u ( x ) ) ∣ × d x x ⋅ tan ( u ( x ) ) ⟶ d u ( x ) sin ( u ( x ) ) cos ( u ( x ) ) = d x x → cos ( u ( x ) ) d u ( x ) sin ( u ( x ) ) = d x x ⟶ ∫ d ( sin ( u ( x ) ) ) sin ( u ( x ) ) = ∫ d x x → ln ∣ sin ( u ( x ) ) ∣ = ln ∣ x ∣ + ln ∣ C ∣ e ln ∣ sin ( u ( x ) ) ∣ = e ln ∣ C x ∣ → sin ( u ( x ) ) = C x → u ( x ) = arcsin ( C x ) y ( x ) = x ⋅ u ( x ) = x ⋅ arcsin ( C x ) y(x)=x\cdot u(x)\to y'(x)=u(x)+x\cdot u'(x)\longrightarrow\\[0.3cm]
u(x)+x\cdot u'(x)=\frac{x\cdot u(x)}{x}+\tan\left(\frac{x\cdot u(x)}{x}\right)\longrightarrow\\[0.3cm]
x\cdot u'(x)=u(x)-u(x)+\tan\left(u(x)\right)\longrightarrow\\[0.3cm]
\left.x\cdot\frac{du(x)}{dx}=\tan\left(u(x)\right)\right|\times\frac{dx}{x\cdot\tan(u(x))}\longrightarrow\\[0.3cm]
\frac{du(x)}{\displaystyle\frac{\sin(u(x))}{\cos(u(x))}}=\frac{dx}{x}\to\frac{\cos(u(x))du(x)}{\sin(u(x))}=\frac{dx}{x}\longrightarrow\\[0.3cm]
\int\frac{d\left(\sin(u(x))\right)}{\sin(u(x))}=\int\frac{dx}{x}\to\ln\left|\sin(u(x))\right|=\ln|x|+\ln|C|\\[0.3cm]
e^{\ln\left|\sin(u(x))\right|}=e^{\ln|Cx|}\to\sin(u(x))=Cx\to\boxed{u(x)=\arcsin(Cx)}\\[0.3cm]
\boxed{y(x)=x\cdot u(x)=x\cdot\arcsin(Cx)} y ( x ) = x ⋅ u ( x ) → y ′ ( x ) = u ( x ) + x ⋅ u ′ ( x ) ⟶ u ( x ) + x ⋅ u ′ ( x ) = x x ⋅ u ( x ) + tan ( x x ⋅ u ( x ) ) ⟶ x ⋅ u ′ ( x ) = u ( x ) − u ( x ) + tan ( u ( x ) ) ⟶ x ⋅ d x d u ( x ) = tan ( u ( x ) ) ∣ ∣ × x ⋅ tan ( u ( x )) d x ⟶ cos ( u ( x )) sin ( u ( x )) d u ( x ) = x d x → sin ( u ( x )) cos ( u ( x )) d u ( x ) = x d x ⟶ ∫ sin ( u ( x )) d ( sin ( u ( x )) ) = ∫ x d x → ln ∣ sin ( u ( x )) ∣ = ln ∣ x ∣ + ln ∣ C ∣ e l n ∣ s i n ( u ( x )) ∣ = e l n ∣ C x ∣ → sin ( u ( x )) = C x → u ( x ) = arcsin ( C x ) y ( x ) = x ⋅ u ( x ) = x ⋅ arcsin ( C x )
ANSWER
y ( x ) = x ⋅ arcsin ( C x ) y(x)=x\cdot\arcsin(Cx) y ( x ) = x ⋅ arcsin ( C x )
Comments