Question #148540
Solve the differential equation
xdy/dx +y = y^2Inx
1
Expert's answer
2020-12-04T07:31:07-0500

Given differential equation: xdydx+y=y2lnxx\frac{dy}{dx}+y=y^2lnx

Dividing the given equation by xx , we get

dydx+yx=y2lnxx\frac{dy}{dx}+\frac{y}{x}=\frac{y^2lnx}{x}

Observe that the above differential equation is Bernoulli's differential equation.

It can be reduced to Linear Differential equation dividing the equation by y2y^2 and then take the substitution 1y=z1y2dydx=dzdx\frac{1}{y}=z\Rightarrow \frac{1}{y^2}\frac{dy}{dx}=-\frac{dz}{dx}

Then the given differential equation becomes

1y2dydx+1y1x=lnxx\frac{1}{y^2}\frac{dy}{dx}+\frac{1}{y}\frac{1}{x}=\frac{lnx}{x}

dzdx+zx=lnxxdzdxzx=lnxx\Rightarrow -\frac{dz}{dx}+\frac{z}{x}=\frac{lnx}{x} \Rightarrow \frac{dz}{dx}-\frac{z}{x}=-\frac{lnx}{x}

The above is a first order linear differential equation of the form

dzdx+p(x)z=g(x)\frac{dz}{dx}+p(x)z=g(x) , where p(x)=1xp(x)=-\frac{1}{x} and g(x)=lnxxg(x)=-\frac{lnx}{x}

General solution to the differential equation is

zz (Integrating Factor)==\int (Integrating Factor)(g(x)dx+Cg(x)dx+C , where

Integrating Factor =ep(x)dx=e^{\int p(x)dx}

Using the above, we have

Integrating Factor = =e(1x)dx=elnx=eln(1x)=1x=e^{\int (-\frac{1}{x})dx}=e^{-lnx}=e^{ln(\frac{1}{x})}=\frac{1}{x}

General solution is

z(1x)=(1x)(lnxx)dx+C=lnxx2dx+Cz(\frac{1}{x})=\int (\frac{1}{x})(-\frac{lnx}{x})dx+C=-\int \frac{lnx}{x^2}dx+C

Take the substitution lnx=u1xdx=dulnx=u\Rightarrow \frac{1}{x}dx=du and 1x=eu\frac{1}{x}=e^{-u}

Then, we get

zx=(ueu)du+C=[ueueu]+C\frac{z}{x}=-\int (ue^{-u})du+C=-[-ue^{-u}-e^{-u}]+C (Using integration by parts)

That is we get

zx=[ueu+eu]+C=lnxx+1x+C\frac{z}{x}=[ue^{-u}+e^{-u}]+C=\frac{lnx}{x}+\frac{1}{x}+C (u=lnx)(u=lnx)

That is we get

1xy=lnxx+1x+C(z=1y)\frac{1}{xy}=\frac{lnx}{x}+\frac{1}{x}+C(z=\frac{1}{y})

Therefore, general solution to the given differential equation is

ylnx+y+C=1ylnx+y+C=1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS