Let us solve the differential equation y′=2xyx2+y2.
Let y=ux. Then y′=u′x+u. Consequently we have the following differential equation:
u′x+u=2ux2x2+u2x2=2u1+u2
u′x=2u1+u2−u=2u1−u2
dxdux=2u1−u2
1−u22udu=xdx
∫1−u22udu=∫xdx
−∫1−u2d(1−u2)=∫xdx
−ln∣1−u2∣=ln∣x∣−ln∣C∣
ln∣C∣=ln∣x(1−u2)∣
C=x(1−u2)
C=x(1−x2y2)
Therefore, the solution of the differential equation y′=2xyx2+y2 is the following:
C=x−xy2
Comments