Question #148529
Solutions for y'= x²+y²/2xy
1
Expert's answer
2020-12-04T07:45:56-0500

Let us solve the differential equation y=x2+y22xyy'= \frac{x²+y²}{2xy}.


Let y=uxy=ux. Then y=ux+uy'=u'x+u. Consequently we have the following differential equation:


ux+u=x2+u2x22ux2=1+u22uu'x+u=\frac{x²+u²x^2}{2ux^2}=\frac{1+u²}{2u}


ux=1+u22uu=1u22uu'x=\frac{1+u²}{2u}-u=\frac{1-u²}{2u}


dudxx=1u22u\frac{du}{dx}x=\frac{1-u²}{2u}


2udu1u2=dxx\frac{2udu}{1-u^2}=\frac{dx}{x}


2udu1u2=dxx\int\frac{2udu}{1-u^2}=\int\frac{dx}{x}


d(1u2)1u2=dxx-\int\frac{d(1-u^2)}{1-u^2}=\int\frac{dx}{x}


ln1u2=lnxlnC-\ln|1-u^2|=\ln|x|-\ln|C|


lnC=lnx(1u2)\ln|C|=\ln|x(1-u^2)|


C=x(1u2)C=x(1-u^2)


C=x(1y2x2)C=x(1-\frac{y^2}{x^2})


Therefore, the solution of the differential equation y=x2+y22xyy'= \frac{x²+y²}{2xy} is the following:


C=xy2xC=x-\frac{y^2}{x}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS