Question #148361
Find Particular solution of d²y/dx² -y=sinh2x
1
Expert's answer
2020-12-06T19:54:14-0500

Let us find the solution of the equation d2ydx2y=sinh2x\frac{d²y}{dx²} -y=\sinh2x. Note that sinh2x=e2xe2x2\sinh 2x =\frac{e^{2x}-e^{-2x}}{2} .


The characteristic equation k21=0k^2-1=0 of the equation d2ydx2y=0\frac{d²y}{dx²} -y=0 has the solutions k=1k=1and k=1.k=-1.


The solution of the equation d2ydx2y=e2xe2x2\frac{d²y}{dx²} -y=\frac{e^{2x}-e^{-2x}}{2} is y=C1ex+C2ex+ypy=C_1e^x+C_2e^{-x+}y_p, where ypy_p is a particular solution of d2ydx2y=e2xe2x2\frac{d²y}{dx²} -y=\frac{e^{2x}-e^{-2x}}{2} .


yp=Ae2x+Be2xy_p=Ae^{2x}+Be^{-2x}


yp=2Ae2x2Be2xy_p'=2Ae^{2x}-2Be^{-2x}


yp=4Ae2x+4Be2xy_p''=4Ae^{2x}+4Be^{-2x}


4Ae2x+4Be2x(Ae2x+Be2x)=e2xe2x24Ae^{2x}+4Be^{-2x}-(Ae^{2x}+Be^{-2x})=\frac{e^{2x}-e^{-2x}}{2}


3Ae2x+3Be2x=12e2x12e2x3Ae^{2x}+3Be^{-2x}=\frac{1}{2}e^{2x}-\frac{1}{2}e^{-2x}


3A=123A=\frac{1}{2} and 3B=123B=-\frac{1}{2}


A=16A=\frac{1}{6} and B=16B=-\frac{1}{6}


Therefore, the general solution is the following:


y=C1ex+C2ex+16e2x16e2x=C1ex+C2ex+13sinh2xy=C_1e^x+C_2e^{-x}+\frac{1}{6}e^{2x}-\frac{1}{6}e^{-2x}=C_1e^x+C_2e^{-x}+\frac{1}{3}\sinh 2x


The particular solution is yp=13sinh2xy_p=\frac{1}{3}\sinh 2x (for C1=C2=0C_1=C_2=0).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS