Question #148436
Solve the following differential equation d^2y/dx^2 - 2dy/dx + 10y = 0,. Given Y(0) = 4. dy/dx (0) = 1
1
Expert's answer
2020-12-08T10:16:32-0500

d2ydx22dydx+10y=0The auxilliary equation is going to bem22m+10=0Using quadratic formulam=(2)±(2)24(1)(10)2(10)m=2±362m1 = 1+3i and m2 = 1- 3iY=A1e(1+3i)x+A2e(13i)xY=A1ex.e3ix+A2ex.e3ixY=A1ex[cos(3x)+isin(3x)]+A2ex[cos(3x)isin(3x)]Y=[(A1+A2)excos(3x)]+[(A1A2)exisin(3x)]Let(A1+A2)=A(A1A2)=B    Y=ex[Acos(3x)+Bisin(3x)]since Y(0)=4, thenY(0)=e0[Acos3(0)+Bisin3(0)]4=A that isA = 4dydx=Aex[cos(3x)3isin(3x)]+Bex[3cos(3x)+isin(3x)]dydx(0)=Ae0[cos(3(0))3isin(3(0))]+Be0[3cos(3(0))+isin(3(0))]dydx(0)=A+3B1=4+3B3B=3B=1Y=ex[4cos(3x)isin(3x)]\frac{d^2y}{dx^2}-2\frac{dy}{dx}+10y=0\\ \text{The auxilliary equation is going to be}\\ m^2-2m+10=0\\ \text{Using quadratic formula}\\ m=\frac{-(-2)\pm\sqrt{(-2)^2-4(1)(10)}}{2(10)}\\ m=\frac{2\pm\sqrt{-36}}{2}\\ \text{m1 = 1+3i and m2 = 1- 3i}\\ Y=A_1e^{(1+3i)x}+A_2e^{(1-3i)x}\\ Y=A_1e^x.e^{3ix}+A_2e^x.e^{-3ix}\\ Y=A_1e^x[cos(3x)+isin(3x)]+A_2e^x[cos(3x)-isin(3x)]\\ Y=[(A_1+A_2)e^xcos(3x)]+[(A_1-A_2)e^xisin(3x)]\\ Let (A_1+A_2)=A\\ (A_1-A_2)=B \implies\\ Y=e^x[Acos(3x)+Bisin(3x)]\\ \text{since Y(0)=4, then}\\ Y(0)=e^0[Acos3(0)+Bisin3(0)]\\ \text{4=A that is}\\ \text{A = 4}\\ \frac{dy}{dx}=Ae^x[cos(3x)-3isin(3x)]+Be^x[3cos(3x)+isin(3x)]\\ \frac{dy}{dx}(0)=Ae^0[cos(3(0))-3isin(3(0))]+Be^0[3cos(3(0))+isin(3(0))]\\ \frac{dy}{dx}(0)=A+3B\\ 1= 4 +3B\\ 3B=-3\\ B=-1\\ Y=e^x[4cos(3x)-isin(3x)]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS