Solve the following differential equation d^2y/dx^2 - 2dy/dx + 10y = 0,. Given Y(0) = 4. dy/dx (0) = 1
1
Expert's answer
2020-12-08T10:16:32-0500
dx2d2y−2dxdy+10y=0The auxilliary equation is going to bem2−2m+10=0Using quadratic formulam=2(10)−(−2)±(−2)2−4(1)(10)m=22±−36m1 = 1+3i and m2 = 1- 3iY=A1e(1+3i)x+A2e(1−3i)xY=A1ex.e3ix+A2ex.e−3ixY=A1ex[cos(3x)+isin(3x)]+A2ex[cos(3x)−isin(3x)]Y=[(A1+A2)excos(3x)]+[(A1−A2)exisin(3x)]Let(A1+A2)=A(A1−A2)=B⟹Y=ex[Acos(3x)+Bisin(3x)]since Y(0)=4, thenY(0)=e0[Acos3(0)+Bisin3(0)]4=A that isA = 4dxdy=Aex[cos(3x)−3isin(3x)]+Bex[3cos(3x)+isin(3x)]dxdy(0)=Ae0[cos(3(0))−3isin(3(0))]+Be0[3cos(3(0))+isin(3(0))]dxdy(0)=A+3B1=4+3B3B=−3B=−1Y=ex[4cos(3x)−isin(3x)]
Comments