x2p+y2q=z2The lagrange auxiliary equation isx2dx=y2dy=z2dzx2dx+y2dy−2z2dz=0Choosing(x21,y21,−2z21)as multpliers.∫x2dx+∫y2dy−2∫z2dz=0−x1−y1+2z1=Cx1+y1−2z1=Cyz+xz−2xy=CxyzLetzbe constant.It impliesx2dx−y2dy=0.∫x2dx−∫y2dy=0−x1=−y1+ϕ(z),x1−y1=−ϕ(z)y−x=ϕ(z)xyx1−y1=−ϕ(z)−x21+y21dxdy=dzd(ϕ(z))⋅dxdzx2dx−y2dy=−dzd(ϕ(z))⋅dzx2dx−y2dy=0⋅dzdzd(ϕ(z))=0d(ϕ(z))=0⋅dz∫d(ϕ(z))=∫0⋅dz∴ϕ(z)=Cy−x=Cxyϕ(x1−y1,x1+y1−z2)=0,is the solution to the PDE
Comments