Question #148089
Solve for the equation of the orthogonal trajectory: 1. Y = 3x - 1 + Ce-3x
1
Expert's answer
2020-12-02T01:46:57-0500

Given: y=3x1+Ce3xy=3x-1+Ce^{-3x} ... (1)

Find the differential equation for the given family of curves by eliminating the arbitrary constant CC .

Differing the given equation (1) with respect to xx , we get

dydx=3(1)0+Ce3x(3)=33Ce3x\frac{dy}{dx}=3(1)-0+Ce^{-3x}(-3)=3-3Ce^{-3x}

That is dydx=33Ce3x...(2)\frac{dy}{dx}=3-3Ce^{-3x} ... (2)

Eliminate CC from the equations (1) and (2).

From equation (2), 3Ce3x=3dydxC=e3x13e3xdydx3Ce^{-3x} =3-\frac{dy}{dx} \Rightarrow C=e^{3x}-\frac{1}{3}e^{3x}\frac{dy}{dx}

Substitute CC in equation (1), we get y=3x1+(e3x13e3xdydx)e3x=3x1+113dydxy=3x-1+\left ( e^{3x}-\frac{1}{3}e^{3x}\frac{dy}{dx} \right )e^{-3x}=3x-1+1-\frac{1}{3}\frac{dy}{dx}

y=3x13dydx\Rightarrow y=3x-\frac{1}{3}\frac{dy}{dx}

Replace dydx\frac{dy}{dx} by dxdy-\frac{dx}{dy} to get the differential equation of the orthogonal trajectories.

Then, we get

y=3x13(dxdy)=3x+13dxdyy=3x-\frac{1}{3}\left ( -\frac{dx}{dy} \right )=3x+\frac{1}{3}\frac{dx}{dy}

dxdy+9x=3y\frac{dx}{dy}+9x=3y

The above is a first order linear differential equation of the form dxdy+p(y)x=g(y)\frac{dx}{dy}+p(y)x=g(y) ,

where p(y)=9p(y)=9 and g(y)=3yg(y)=3y

General solution to the linear differential equation is

x(x( Integrating Factor) = (\int ( Integrating Factor)(g(y))dy+cg(y))dy+c ,

where Integrating Factor = ep(y)dye^{\int p(y)dy}

Using the above, Integrating Factor = e9ye^{9y}

General solution is x(e9y)=(e9y)(3y)dy+cx(e^{9y})=\int (e^{9y})(3y)dy+c

Use integration by parts to evaluate the right side integral.

Then, we get

x=y3127+ce9yx=\frac{y}{3}-\frac{1}{27}+ce^{-9y}

Therefore, orthogonal trajectories for the given family of curves is

x=y3127+ce9yx=\frac{y}{3}-\frac{1}{27}+ce^{-9y} , where cc is arbitrary constant.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS