Lagrange’s Partial Differential Equation of Order One
(y−z)p−(x−z)q=(y−x)z Lagrange’s auxiliary equations
y−zdx=z−xdy=z(y−x)dz
xy−xz+yz−xy−yz+xzxdx+ydy−dz=0d(2x2+2y2−z)
d(2x2+2y2−z)=0 Integrating
2x2+2y2−z=a
y−z+z−x−y+xdx+dy−z1dz=0d(x+y−ln∣z∣)
d(x+y−ln∣z∣))=0 Integrating
x+y−ln∣z∣=bThe general solution is
ϕ(2x2+2y2−z,x+y−ln∣z∣)=0
Comments