(y-z)zx -(x-z)zy=(y-x)z
Lagrange’s Partial Differential Equation of Order One
Lagrange’s auxiliary equations
"\\dfrac{xdx+ydy-dz}{xy-xz+yz-xy-yz+xz}=\\dfrac{d(\\dfrac{x^2}{2}+\\dfrac{y^2}{2}-z)}{0}"
"d(\\dfrac{x^2}{2}+\\dfrac{y^2}{2}-z)=0"
Integrating
"\\dfrac{dx+dy-\\dfrac{1}{z}dz}{y-z+z-x-y+x}=\\dfrac{d(x+y-\\ln|z|)}{0}"
Integrating
The general solution is
Comments
Leave a comment