Question #147954

(y-z)zx -(x-z)zy=(y-x)z


1
Expert's answer
2020-12-02T11:03:09-0500

Lagrange’s Partial Differential Equation of Order One


(yz)p(xz)q=(yx)z(y − z)p - (x-z)q = (y-x)z

Lagrange’s auxiliary equations


dxyz=dyzx=dzz(yx)\dfrac{dx}{y-z}=\dfrac{dy}{z-x}=\dfrac{dz}{z(y-x)}

xdx+ydydzxyxz+yzxyyz+xz=d(x22+y22z)0\dfrac{xdx+ydy-dz}{xy-xz+yz-xy-yz+xz}=\dfrac{d(\dfrac{x^2}{2}+\dfrac{y^2}{2}-z)}{0}

d(x22+y22z)=0d(\dfrac{x^2}{2}+\dfrac{y^2}{2}-z)=0

Integrating


x22+y22z=a\dfrac{x^2}{2}+\dfrac{y^2}{2}-z=a

dx+dy1zdzyz+zxy+x=d(x+ylnz)0\dfrac{dx+dy-\dfrac{1}{z}dz}{y-z+z-x-y+x}=\dfrac{d(x+y-\ln|z|)}{0}


d(x+ylnz))=0d(x+y-\ln|z|))=0

Integrating


x+ylnz=bx+y-\ln|z|=b

The general solution is


ϕ(x22+y22z,x+ylnz)=0\phi(\dfrac{x^2}{2}+\dfrac{y^2}{2}-z, x+y-\ln|z|)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS