−∫dpp(kp−M)=∫dt,-\int \frac{dp}{p(kp-M)}=\int dt,−∫p(kp−M)dp=∫dt,
1Mln∣kp−Mp∣=t+1MlnC1,\frac 1 M ln|\frac{kp-M}{p}|=t+\frac 1MlnC_1,M1ln∣pkp−M∣=t+M1lnC1,
ln∣kp−MC1p∣=Mt,ln|\frac{kp-M}{C_1p}|=Mt,ln∣C1pkp−M∣=Mt,
kC1−eMt=MC1p,\frac{k}{C_1}-e^{Mt}=\frac{M}{C_1p},C1k−eMt=C1pM,
p(t)=Mk−C1eMt=Mk−eMt+C.p(t)=\frac{M}{k-C_1e^{Mt}}=\frac{M}{k-e^{Mt+C}}.p(t)=k−C1eMtM=k−eMt+CM.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments