Question #147905
(x^2D^2-3xD + 1)y= x^-1 [1 + logx sin (logx)]
1
Expert's answer
2020-12-02T01:47:44-0500
SolutionSolution

Given the equation

(x2D23xD+1)y=x1[1+logxsin(logx)](x^2D^2-3xD + 1)y= x^{-1} [1 + logx sin (logx)]

which is a homogeneous linear equation. Let x=ezx=e^z, that is z=log xz=log\ x, then the equation becomes;


(D1(D11)3D1+1)y=ez(1+zsinz)    (D124D1+1)y=ez(1+zsinz)(D_1(D_1-1)-3D_1+1)y=e^z(1+z\sin z)\\ \implies (D_1^2-4D_1+1)y=e^z(1+z\sin z)


Hence the auxiliary equation is


(D124D1+1)y=0    D1=4±122=2±3(D_1^2-4D_1+1)y=0\\ \implies D_1=\frac{4 \pm \sqrt{12}}{2}=2 \pm \sqrt{3}


Hence C.F=C1e(2+3)z+C2e(23)zC.F=C_1e^{(2+\sqrt{3})z}+C_2e^{(2-\sqrt{3})z}

C.F=C1e(2+3)logx+C2e(23)logx    C1x2+3+C2x23    x2(C1x3+C2x3)C.F=C_1e^{(2+\sqrt{3})log x}+C_2e^{(2-\sqrt{3})log x}\\ \implies C_1x^{2+\sqrt{3}}+C_2x^{2-\sqrt{3}}\\ \implies x^2(C_1x^{\sqrt{3}}+C_2x^{-\sqrt{3}})


Now,


P.I=1D124D1+1ez(z sinz)+ezP.I=\frac{1}{D^2_1-4D_1+1}e^{-z}(z\ sin z)+e^{-z}

For ez(z sinz)e^{-z}(z\ sin z)


P.I1=1D124D1+1ez(z sinz)    ez1(D11)24(D11)+1(z sinz)    ez1(D126D1+6)(z sinz)    ez[z1D126D1+6sinz1(D126D1+6)2(2D16)sinz]    ez[z1D126D1+6sinz1(D126D1+6)2(2cosz6sinz)]    ez[z156D1sinz1(56D1)2(6sinz2cosz)]    ez[z(5+6D1)12536D12sinz12560D1+36D12(6sinz2cosz)]    ez[z(5+6D1)161sinz1116D1(6sinz2cosz)]    ez[z61(5sinz+6cosz)(60D111)13600D12121(6sinz2cosz)]    ez[z61(5sinz+6cosz)+(60D111)13721(6sinz2cosz)]    ez[z61(5sinz+6cosz)+13721(360cosz120sinz66sinz22cosz)]    ez[z61(5sinz+6cosz)+13721(382cosz54sinz)]    x1[logx61(5sin(logx)+6cos(logx))+13721(382cos(logx)54sin(logx))]P.I_1=\frac{1}{D^2_1-4D_1+1}e^{-z}(z\ sin z)\\ \implies e^{-z}\frac{1}{(D_1-1)^2-4(D_1-1)+1}(z\ sin z)\\ \implies e^{-z}\frac{1}{(D_1^2-6D_1+6)}(z\ sin z)\\ \implies e^{-z}[z \frac{1}{D_1^2-6D_1+6}sin z-\frac{1}{(D_1^2-6D_1+6)^2}(2D_1-6)sin z]\\ \implies e^{-z}[z \frac{1}{D_1^2-6D_1+6}sin z-\frac{1}{(D_1^2-6D_1+6)^2}(2cos z-6sin z)]\\ \implies e^{-z}[z \frac{1}{5-6D_1}sin z-\frac{1}{(5-6D_1)^2}(6sin z-2cos z)]\\ \implies e^{-z}[z(5+6D_1) \frac{1}{25-36D_1^2}sin z-\frac{1}{25-60D_1+36D_1^2}(6sin z-2cos z)]\\ \implies e^{-z}[z(5+6D_1) \frac{1}{61}sin z-\frac{1}{-11-6-D_1}(6sin z-2cos z)]\\ \implies e^{-z}[\frac{z}{61}(5sin z +6cos z)-(60D_1-11)\frac{1}{3600D_1^2-121}(6sin z-2cos z)]\\ \implies e^{-z}[\frac{z}{61}(5sin z +6cos z)+(60D_1-11)\frac{1}{3721}(6sin z-2cos z)]\\ \implies e^{-z}[\frac{z}{61}(5sin z +6cos z)+\frac{1}{3721}(-360cos z-120sin z-66sinz-22cos z)]\\ \implies e^{-z}[\frac{z}{61}(5sin z +6cos z)+\frac{1}{3721}(-382cos z-54sin z)]\\ \implies x^{-1}[\frac{log x}{61}(5sin (log x) +6cos (log x))+\frac{1}{3721}(-382cos (log x)-54sin (log x))]\\

P.I1=x1[logx61(5sin(logx)+6cos(logx))+13721(382cos(logx)54sin(logx))]\therefore P.I_1= x^{-1}[\frac{log x}{61}(5sin (log x) +6cos (log x))+\frac{1}{3721}(-382cos (log x)-54sin (log x))]


Now, for eze^{-z} where D1=1D_1=-1

P.I2=1D124D1+1ezP.I2=1(1)24(1)+1ez    1(14+1)ez=16xP.I_2=\frac{1}{D_1^2-4D_1+1}e^{-z}\\ P.I_2=\frac{1}{(1)^2-4(1)+1}e^{-z} \implies \frac{1}{(1-4+1)e^{-z}}=\frac{1}{6}x\\

Hence the general solution is y=C.F+P.I2+P.I1y=C.F+P.I_2+P.I_1


y=x2(C1x3+C2x3)+16x+x1[logx61(5sin(logx)+6cos(logx))+13721(382cos(logx)54sin(logx))]y=x^2(C_1x^{\sqrt{3}}+C_2x^{-\sqrt{3}})+\frac{1}{6}x+x^{-1}[\frac{log x}{61}(5sin (log x) +6cos (log x))+\frac{1}{3721}(-382cos (log x)-54sin (log x))]



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS