SolutionGiven the equation
(x2D2−3xD+1)y=x−1[1+logxsin(logx)]which is a homogeneous linear equation. Let x=ez, that is z=log x, then the equation becomes;
(D1(D1−1)−3D1+1)y=ez(1+zsinz)⟹(D12−4D1+1)y=ez(1+zsinz)
Hence the auxiliary equation is
(D12−4D1+1)y=0⟹D1=24±12=2±3
Hence C.F=C1e(2+3)z+C2e(2−3)z
C.F=C1e(2+3)logx+C2e(2−3)logx⟹C1x2+3+C2x2−3⟹x2(C1x3+C2x−3)
Now,
P.I=D12−4D1+11e−z(z sinz)+e−z
For e−z(z sinz)
P.I1=D12−4D1+11e−z(z sinz)⟹e−z(D1−1)2−4(D1−1)+11(z sinz)⟹e−z(D12−6D1+6)1(z sinz)⟹e−z[zD12−6D1+61sinz−(D12−6D1+6)21(2D1−6)sinz]⟹e−z[zD12−6D1+61sinz−(D12−6D1+6)21(2cosz−6sinz)]⟹e−z[z5−6D11sinz−(5−6D1)21(6sinz−2cosz)]⟹e−z[z(5+6D1)25−36D121sinz−25−60D1+36D121(6sinz−2cosz)]⟹e−z[z(5+6D1)611sinz−−11−6−D11(6sinz−2cosz)]⟹e−z[61z(5sinz+6cosz)−(60D1−11)3600D12−1211(6sinz−2cosz)]⟹e−z[61z(5sinz+6cosz)+(60D1−11)37211(6sinz−2cosz)]⟹e−z[61z(5sinz+6cosz)+37211(−360cosz−120sinz−66sinz−22cosz)]⟹e−z[61z(5sinz+6cosz)+37211(−382cosz−54sinz)]⟹x−1[61logx(5sin(logx)+6cos(logx))+37211(−382cos(logx)−54sin(logx))]
∴P.I1=x−1[61logx(5sin(logx)+6cos(logx))+37211(−382cos(logx)−54sin(logx))]
Now, for e−z where D1=−1
P.I2=D12−4D1+11e−zP.I2=(1)2−4(1)+11e−z⟹(1−4+1)e−z1=61x
Hence the general solution is y=C.F+P.I2+P.I1
y=x2(C1x3+C2x−3)+61x+x−1[61logx(5sin(logx)+6cos(logx))+37211(−382cos(logx)−54sin(logx))]
Comments