Question #147856
(√(1-y^2)dx)-(√(1-x^2)dy)=0, y(0)=√3/2)
1
Expert's answer
2020-12-02T20:07:31-0500

(1y2)dx(1x2)dy=0(1y2)dx=(1x2)dy11y2dy=11x2dxIntegrate both sidessin1(y)=sin1(x)+cButy(0)=32sin1(32)=sin1(0)+c60=0+cc=60Therefore,sin1(y)=sin1(x)+60°(\sqrt{1-y^2})dx-(\sqrt{1-x^2})dy=0\\ (\sqrt{1-y^2})dx=(\sqrt{1-x^2})dy\\ \frac{1}{\sqrt{1-y^2}}dy=\frac{1}{\sqrt{1-x^2}}dx\\ \text{Integrate both sides}\\ \sin^{-1}(y)=\sin^{-1}(x)+c\\ \text{But} y(0)=\frac{\sqrt{3}}{2}\\ \sin^{-1}(\frac{\sqrt{3}}{2})=\sin^{-1}(0)+c\\ 60^{\circ}=0+c\\ c=60^{\circ}\\ \text{Therefore}, \\ \sin^{-1}(y)=\sin^{-1}(x)+60°

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS