"(\\sqrt{1-y^2})dx-(\\sqrt{1-x^2})dy=0\\\\\n(\\sqrt{1-y^2})dx=(\\sqrt{1-x^2})dy\\\\\n\\frac{1}{\\sqrt{1-y^2}}dy=\\frac{1}{\\sqrt{1-x^2}}dx\\\\\n\\text{Integrate both sides}\\\\\n\\sin^{-1}(y)=\\sin^{-1}(x)+c\\\\\n\\text{But} y(0)=\\frac{\\sqrt{3}}{2}\\\\\n\\sin^{-1}(\\frac{\\sqrt{3}}{2})=\\sin^{-1}(0)+c\\\\\n60^{\\circ}=0+c\\\\\nc=60^{\\circ}\\\\\n\\text{Therefore}, \\\\\n\\sin^{-1}(y)=\\sin^{-1}(x)+60\u00b0"
Comments
Leave a comment