Question #148140
Solve the following differential equation by reducing it to normal form using change of dependent variable
d^2y/dx^2-2xdy/dx + (x^2+2)y= e^1/2(x^2+2x)
1
Expert's answer
2020-12-02T18:02:30-0500

Note : Probably, you made a mistake in writing the assignment. I will correct the task so that it can be solved.


Solve ordinary differential equation :



d2ydx22xdydx+(x2+2)y=e(x2+2)\frac{d^2y}{dx^2}-2x\cdot\frac{dy}{dx} + (x^2+2)y= \sqrt{e}(x^2+2)

From the theory we know that for solving the equation



y+f(x)y+g(x)y=F(x)y''+f(x)\cdot y'+g(x)\cdot y=F(x)



convenient to introduce a new variable



y(x)=k(x)exp(12f(x)dx)y(x)=k(x)\cdot exp\left(-\frac{1}{2}\cdot\int f(x)dx\right)

In our case,


d2ydx22xf(x)dydx+(x2+2)g(x)y=e(x2+2)F(x)\frac{d^2y}{dx^2}\underbrace{-2x}_{f(x)}\cdot\frac{dy}{dx} +\underbrace{(x^2+2)}_{g(x)}y= \underbrace{\sqrt{e}(x^2+2)}_{F(x)}

Then,


f(x)=2x12f(x)dx=12(2x)dx=x22y(x)=k(x)ex2/2dydx=kex2/2+xkex2/2dydx=ex2/2(k+xk)d2ydx2=kex2/2+xkex2/2+kex2/2+xkex2/2+x2kex2/2d2ydx2=ex2/2(k+2xk+k+x2k)f(x)=-2x\to-\frac{1}{2}\cdot\int f(x)dx=-\frac{1}{2}\cdot\int (-2x)dx=\frac{x^2}{2}\\[0.3cm] y(x)=k(x)\cdot e^{x^2/2}\to \frac{dy}{dx}=k'\cdot e^{x^2/2}+xk\cdot e^{x^2/2}\\[0.3cm] \boxed{\frac{dy}{dx}=e^{x^2/2}\cdot\left(k'+xk\right)}\\[0.3cm] \frac{d^2y}{dx^2}=k''\cdot e^{x^2/2}+xk'\cdot e^{x^2/2}+k\cdot e^{x^2/2}+xk'\cdot e^{x^2/2}+x^2k\cdot e^{x^2/2}\\[0.3cm] \boxed{\frac{d^2y}{dx^2}=e^{x^2/2}\cdot\left(k'' +2xk'+k+x^2k\right)}

We substitute the found derivatives into the initial equation



d2ydx22xdydx+(x2+2)y=e(x2+2)ex2/2(k+2xk+k+x2k)2xex2/2(k+xk)++(x2+2)ex2/2k=e(x2+2)÷(ex2/2)k+2xk+k+x2k2xk2x2k+x2k+2k=ex2/2e(x2+2)k+3k=ex2/2e(x2+2)\frac{d^2y}{dx^2}-2x\cdot\frac{dy}{dx}+(x^2+2)\cdot y=\sqrt{e}\cdot(x^2+2)\\[0.3cm] e^{x^2/2}\cdot\left(k'' +2xk'+k+x^2k\right)-2x\cdot e^{x^2/2}\cdot\left(k'+xk\right)+\\[0.3cm] \left.+(x^2+2)\cdot e^{x^2/2}\cdot k=\sqrt{e}\cdot(x^2+2)\right|\div\left(e^{-x^2/2}\right)\\[0.3cm] k'' +2xk'+k+x^2k-2xk'-2x^2k+x^2k+2k=e^{-x^2/2}\cdot\sqrt{e}\cdot(x^2+2)\\[0.3cm] k''+3k=e^{-x^2/2}\cdot\sqrt{e}\cdot(x^2+2)



This is a second order inhomogeneous equation. The solutions will have the form :



k(x)=khom(x)+kpart(x),wherekhom(x):k+3k=0k(x)=eλxk(x)=λeλxandk(x)=λ2eλxeλx(λ2+3)=0[λ1=i3λ2=i3khom(x)=A1ei3x+A2ei3xC1cos(3x)+C2sin(3x)khom(x)=C1cos(3x)+C2sin(3x)k(x)=k_{hom}(x)+k_{part}(x),\,\,\,\text{where}\\[0.3cm] k_{hom}(x) : k''+3k=0\to k(x)=e^{\lambda x}\to\\[0.3cm] k'(x)=\lambda\cdot e^{\lambda x}\,\,\,\text{and}\,\,\, k''(x)=\lambda^2\cdot e^{\lambda x}\\[0.3cm] e^{\lambda x}\cdot(\lambda^2+3)=0\to \left[\begin{array}{l} \lambda_1=i\sqrt{3}\\[0.3cm] \lambda_2=-i\sqrt{3} \end{array}\right.\longrightarrow\\[0.3cm] k_{hom}(x)=A_1\cdot e^{i\sqrt{3}x}+A_2\cdot e^{-i\sqrt{3}x}\equiv C_1\cos\left(\sqrt{3}x\right)+C_2\sin\left(\sqrt{3}x\right)\\[0.3cm] \boxed{k_{hom}(x)= C_1\cos\left(\sqrt{3}x\right)+C_2\sin\left(\sqrt{3}x\right)}

We look for a particular solution in the form



kpart(x)=ex2/2(Ax2+Bx+C)k=(ex2/2)(Ax2+Bx+C)+2(ex2/2)(Ax2+Bx+C)+ex2/2(Ax2+Bx+C)=ex2/2(x21)(Ax2+Bx+C)++ex2/2(2x)(2Ax+B)+ex2/2(2A)k+3k=ex2/2((x21)(Ax2+Bx+C)4Ax22Bx+2A)ex2/2((x21)(Ax2+Bx+C)4Ax22Bx+2A)++3ex2/2(Ax2+Bx+C)=e(1x2)/2(x2+2)÷(ex2/2)Ax4+Bx3+Cx2Ax2BxC4Ax22Bx+2A++3Ax2+3Bx+3C=e(x2+2)Ax4+Bx3+(C2Ae)x2+(2A+2C2e)=0{x4:A=0x3:B=0x2:C2Ae=0C=ex0:2A+2C2e=0k_{part}(x)=e^{-x^2/2}\cdot\left(Ax^2+Bx+C\right)\\[0.3cm] k''=\left(e^{-x^2/2}\right)''\cdot\left(Ax^2+Bx+C\right)+2\left(e^{-x^2/2}\right)'\left(Ax^2+Bx+C\right)'\\[0.3cm] +e^{-x^2/2}\left(Ax^2+Bx+C\right)'' =e^{-x^2/2}(x^2-1)\left(Ax^2+Bx+C\right)+\\[0.3cm]+e^{-x^2/2}(-2x)\left(2Ax+B\right) +e^{-x^2/2}(2A)\\[0.3cm] k''+3k=e^{-x^2/2}((x^2-1)\left(Ax^2+Bx+C\right)-4Ax^2-2Bx+2A)\to\\[0.3cm] e^{-x^2/2}((x^2-1)\left(Ax^2+Bx+C\right)-4Ax^2-2Bx+2A)+\\[0.3cm] \left.+3\cdot e^{-x^2/2}(Ax^2+Bx+C)=e^{(1-x^2)/2}(x^2+2)\right|\div\left(e^{-x^2/2}\right)\\[0.3cm] Ax^4+Bx^3+Cx^2-Ax^2-Bx-C-4Ax^2-2Bx+2A+\\[0.3cm] +3Ax^2+3Bx+3C=\sqrt{e}(x^2+2)\\[0.3cm] Ax^4+Bx^3+(C-2A-\sqrt{e})x^2+(2A+2C-2\sqrt{e})=0\\[0.3cm] \left\{\begin{array}{l} x^4 : A=0\\[0.3cm] x^3 : B=0\\[0.3cm] x^2 : C-2A-\sqrt{e}=0\to C=\sqrt{e}\\[0.3cm] x^0 : 2A+2C-2\sqrt{e}=0 \end{array}\right.

Conclusion,



kpart(x)=ex2/2e\boxed{k_{part}(x)=e^{-x^2/2}\cdot\sqrt{e}}



Then,



k(x)=khom(x)+kpart(x)k(x)=C1cos(3x)+C2sin(3x)+ex2/2ek(x)=k_{hom}(x)+k_{part}(x)\to\\[0.3cm] \boxed{k(x)=C_1\cos\left(\sqrt{3}x\right)+C_2\sin\left(\sqrt{3}x\right)+e^{-x^2/2}\cdot\sqrt{e}}

Finally, general solution is



y(x)=ex2/2k(x)==(C1cos(3x)+C2sin(3x)+ex2/2e)ex2/2y(x)=(C1cos(3x)+C2sin(3x))ex2/2+ey(x)=e^{x^2/2}\cdot k(x)=\\[0.3cm] =\left(C_1\cos\left(\sqrt{3}x\right)+C_2\sin\left(\sqrt{3}x\right)+e^{-x^2/2}\cdot\sqrt{e}\right)\cdot e^{x^2/2}\to\\[0.3cm] \boxed{y(x)=\left(C_1\cos\left(\sqrt{3}x\right)+C_2\sin\left(\sqrt{3}x\right)\right)\cdot e^{x^2/2}+\sqrt{e}}

ANSWER



y(x)=(C1cos(3x)+C2sin(3x))ex2/2+ey(x)=\left(C_1\cos\left(\sqrt{3}x\right)+C_2\sin\left(\sqrt{3}x\right)\right)\cdot e^{x^2/2}+\sqrt{e}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS