solution Consider the differential equation
y′′+2y′+y=e−tln t
The characteristic equation is
m2+2m+1=0(m+1)2=0m+1=0m=−1,−1
So, the complimentary solution of the differential equation is
yc(t)=(c1+c2t)e−tyc(t)=c1e−t+c2te−t
Let y1(t)=e−t,y2(t)=te−t
The Wronskian of these two functions is
w(y1(t),y2(t))=(e−t−e−tte−te−t−te−t)⟹(e−2t−te−2t)−(−te−2t)⟹e−2t
And compare the given equation with y′′+p(t)yt+q(t)y=g(t) then p(t)=2, q(t)=1, g(t)=et ln t
Now the particular solution is yp(t)=y1u1+y2u2 where
u1=−∫w(y1(t),y2(t))y2(t)g(t)δt, u2=∫w(y1(t),y2(t))y1(t)g(t)δt,u1=−∫e−2t(te−t)(e−tln t)δt, u2=∫e−2t(e−t)(e−tln t)δt,u1=−∫(t ln t)δt, u2=∫(ln t)δtu1=−4t2(2 ln t−1), u2=t(ln t−1)
Substitute u1,u2 in the particular solution yp(t)=y1u1+y2u2
Then is
yp(t)=(e−t)(−4t2(2 ln t−1))+(te−t)(t(ln t−1))⟹(−4t2(2 ln t−1))+(ln t−1)t2e−t)⟹(−2ln t+41+ln t−1)t2e−t⟹(2ln t−43)t2e−t
Now, the general solution is
y(t)=yp(t)+yc(t)
∴ The required solution is y(t)=c1e−t+c2te−t+(2ln t−43)t2e−t
Comments