Question #148362
d²y/dx² +2 dy/dx+y=e^-t lnt
1
Expert's answer
2020-12-02T19:01:51-0500
solutionsolution

Consider the differential equation


y+2y+y=etln ty''+2y'+y=e^{-t}ln\ t


The characteristic equation is


m2+2m+1=0(m+1)2=0m+1=0m=1,1m^2+2m+1=0\\ (m+1)^2=0\\ m+1=0\\ m=-1,-1

So, the complimentary solution of the differential equation is


yc(t)=(c1+c2t)etyc(t)=c1et+c2tety_c(t)=(c_1+c_2t)e^{-t}\\ y_c(t)=c_1e^{-t}+c_2te^{-t}\\

Let y1(t)=et,y2(t)=tety_1(t)=e^{-t}, y_2(t)=te^{-t}


The Wronskian of these two functions is

w(y1(t),y2(t))=(ettetetettet)    (e2tte2t)(te2t)    e2tw(y_1(t), y_2(t))=\begin{pmatrix} e^{-t}& te^{-t} \\ -e^{-t} & e^{-t}-te^{-t} \\ \end{pmatrix}\\ \implies (e^{-2t}-te^{-2t})-(-te^{-2t})\\ \implies e^{-2t}

And compare the given equation with y+p(t)yt+q(t)y=g(t)y''+p(t)y^t+q(t)y=g(t) then p(t)=2, q(t)=1, g(t)=et ln tp(t)=2,\ q(t)=1, \ g(t)=e^t\ ln\ t


Now the particular solution is yp(t)=y1u1+y2u2yp(t)=y_1u_1+y_2u_2 where

u1=y2(t)g(t)w(y1(t),y2(t))δt, u2=y1(t)g(t)w(y1(t),y2(t))δt,u1=(tet)(etln t)e2tδt, u2=(et)(etln t)e2tδt,u1=(t ln t)δt, u2=(ln t)δtu1=t24(2 ln t1), u2=t(ln t1)u_1=-\intop\frac{y_2(t)g(t)}{w(y_1(t),y_2(t))}\delta t,\ u_2=\intop\frac{y_1(t)g(t)}{w(y_1(t),y_2(t))}\delta t,\\ u_1=-\intop\frac{(te^{-t})(e^{-t}ln\ t)}{e^{-2t}}\delta t,\ u_2=\intop\frac{(e^{-t})(e^{-t}ln\ t)}{e^{-2t}}\delta t,\\ u_1=-\intop(t\ ln\ t)\delta t,\ u_2=\intop(ln\ t)\delta t\\ u_1=-\frac{t^2}{4}(2\ ln\ t-1),\ u_2=t(ln\ t-1)

Substitute u1,u2u_1, u_2 in the particular solution yp(t)=y1u1+y2u2yp(t)=y_1u_1+y_2u_2

Then is

yp(t)=(et)(t24(2 ln t1))+(tet)(t(ln t1))    (t24(2 ln t1))+(ln t1)t2et)    (ln t2+14+ln t1)t2et    (ln t234)t2etyp(t)=(e^{-t})(-\frac{t^2}{4}(2\ ln\ t-1))+(te^{-t})(t(ln\ t-1))\\ \implies (-\frac{t^2}{4}(2\ ln\ t-1))+(ln\ t-1)t^2e^{-t})\\ \implies (-\frac{ln\ t}{2}+\frac14+ln\ t-1)t^2e^{-t}\\ \implies (\frac{ln\ t}{2}-\frac34)t^2e^{-t}\\

Now, the general solution is

y(t)=yp(t)+yc(t)y(t)=y_p(t)+y_c(t)

\therefore The required solution is y(t)=c1et+c2tet+(ln t234)t2ety(t)=c_1e^{-t}+c_2te^{-t}+(\frac{ln\ t}{2}-\frac34)t^2e^{-t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS