Let us solve the equation sinxdx+ydy=0;y(0)=−2\sin xdx + ydy = 0; y(0)=-2sinxdx+ydy=0;y(0)=−2:
sinxdx=−ydy\sin xdx =- ydysinxdx=−ydy
∫sinxdx=−∫ydy\int \sin xdx = -\int ydy∫sinxdx=−∫ydy
−cosx=−y22+C-\cos x=-\frac{y^2}{2}+C−cosx=−2y2+C
Since y(0)=−2y(0)=-2y(0)=−2, we have the equation −cos0=−(−2)22+C-\cos 0=-\frac{(-2)^2}{2}+C−cos0=−2(−2)2+C which is equivalent to −1=−2+C-1=-2+C−1=−2+C. So, C=1.C=1.C=1.
Therefore,
−cosx=−y22+1-\cos x=-\frac{y^2}{2}+1−cosx=−2y2+1 or
y2=2cosx+2y^2=2\cos x+2y2=2cosx+2
Since y(0)=−2y(0)=-2y(0)=−2, the solution is
y=−2cosx+2y=-\sqrt{2\cos x+2}y=−2cosx+2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments