Question #148536
The motion of a certain spring-mass system is governed by the differential equation d^2u/dt^2+1/8du/dt+u=0 where u is measured in metres and t in seconds. If u(0)=2 and (du/dt)t=0=0 determine the subsequent motion. Also determine the time at which the mass first passes through the equilibrium position.
1
Expert's answer
2020-12-04T10:54:56-0500

Let us solve the equation:


d2udt2+18dudt+u=0\frac{d^2u}{dt^2}+\frac{1}{8}\frac{du}{dt}+u=0


The characteeristic equation k2+18k+1=0k^2+\frac{1}{8}k+1=0 is equivalent to (k+116)2=12561=255256(k+\frac{1}{16})^2=\frac{1}{256}-1=-\frac{255}{256}


So, k+116=±i25516k+\frac{1}{16}=\pm i\frac{\sqrt{255}}{16} and thus k=1±i25516k=\frac{-1\pm i\sqrt{255}}{16}.


Therefore, the solution of the differential equation is


u=et16(C1cos(25516t)+C2sin(25516t))u=e^{-\frac{t}{16}}(C_1\cos(\frac{\sqrt{255}}{16} t)+C_2\sin(\frac{\sqrt{255}}{16} t))


Then dudt=116et16(C1cos(25516t)+C2sin(25516t))+et16(C125516sin(25516t)+C225516cos(25516t))\frac{du}{dt}=-\frac{1}{16}e^{-\frac{t}{16}}(C_1\cos(\frac{\sqrt{255}}{16} t)+C_2\sin(\frac{\sqrt{255}}{16} t))+e^{-\frac{t}{16}}(-C_1\frac{\sqrt{255}}{16}\sin(\frac{\sqrt{255}}{16} t)+C_2\frac{\sqrt{255}}{16}\cos(\frac{\sqrt{255}}{16} t))


If u(0)=2u(0)=2 and dudt(0)=0\frac{du}{dt}(0)=0 then we have 2=u(0)=C12=u(0)=C_1 and 0=dudt(0)=116C1+C2255160=\frac{du}{dt}(0)=-\frac{1}{16}C_1+C_2\frac{\sqrt{255}}{16} .


Therefore, C1=2C_1=2 and C2=2255C_2=\frac{2}{\sqrt{255}} and the subsequent motion is the following:


u=et16(2cos(25516t)+2255sin(25516t))=2et16(cos(25516t)+1255sin(25516t)).u=e^{-\frac{t}{16}}(2\cos(\frac{\sqrt{255}}{16} t)+\frac{2}{\sqrt{255}}\sin(\frac{\sqrt{255}}{16} t))= 2e^{-\frac{t}{16}}(\cos(\frac{\sqrt{255}}{16} t)+\frac{1}{\sqrt{255}}\sin(\frac{\sqrt{255}}{16} t)).


Let us determine the time at which the mass first passes through the equilibrium position. For this we should solve the equation:


u(t)=0u(t)=0


2et16(cos(25516t)+1255sin(25516t))=02e^{-\frac{t}{16}}(\cos(\frac{\sqrt{255}}{16} t)+\frac{1}{\sqrt{255}}\sin(\frac{\sqrt{255}}{16} t))=0


cos(25516t)+1255sin(25516t)=0\cos(\frac{\sqrt{255}}{16} t)+\frac{1}{\sqrt{255}}\sin(\frac{\sqrt{255}}{16} t)=0


tan(25516t)=255\tan(\frac{\sqrt{255}}{16} t)=-\sqrt{255}


25516t1.51+3.14n, nZ.\frac{\sqrt{255}}{16} t\approx -1.51+3.14 n, \ n\in\mathbb Z.


Since the mass first passes through the equilibrium position and t0t\ge 0, we conclude that n=1n=1. Therefore, 25516t1.51+3.14=1.63\frac{\sqrt{255}}{16} t\approx -1.51+3.14=1.63 and t1.63162551.633t\approx 1.63\frac{16}{\sqrt{255}}\approx 1.633 (seconds).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS