Let us solve the equation:
"\\frac{d^2u}{dt^2}+\\frac{1}{8}\\frac{du}{dt}+u=0"
The characteeristic equation "k^2+\\frac{1}{8}k+1=0" is equivalent to "(k+\\frac{1}{16})^2=\\frac{1}{256}-1=-\\frac{255}{256}"
So, "k+\\frac{1}{16}=\\pm i\\frac{\\sqrt{255}}{16}" and thus "k=\\frac{-1\\pm i\\sqrt{255}}{16}".
Therefore, the solution of the differential equation is
"u=e^{-\\frac{t}{16}}(C_1\\cos(\\frac{\\sqrt{255}}{16} t)+C_2\\sin(\\frac{\\sqrt{255}}{16} t))"
Then "\\frac{du}{dt}=-\\frac{1}{16}e^{-\\frac{t}{16}}(C_1\\cos(\\frac{\\sqrt{255}}{16} t)+C_2\\sin(\\frac{\\sqrt{255}}{16} t))+e^{-\\frac{t}{16}}(-C_1\\frac{\\sqrt{255}}{16}\\sin(\\frac{\\sqrt{255}}{16} t)+C_2\\frac{\\sqrt{255}}{16}\\cos(\\frac{\\sqrt{255}}{16} t))"
If "u(0)=2" and "\\frac{du}{dt}(0)=0" then we have "2=u(0)=C_1" and "0=\\frac{du}{dt}(0)=-\\frac{1}{16}C_1+C_2\\frac{\\sqrt{255}}{16}" .
Therefore, "C_1=2" and "C_2=\\frac{2}{\\sqrt{255}}" and the subsequent motion is the following:
"u=e^{-\\frac{t}{16}}(2\\cos(\\frac{\\sqrt{255}}{16} t)+\\frac{2}{\\sqrt{255}}\\sin(\\frac{\\sqrt{255}}{16} t))=\n2e^{-\\frac{t}{16}}(\\cos(\\frac{\\sqrt{255}}{16} t)+\\frac{1}{\\sqrt{255}}\\sin(\\frac{\\sqrt{255}}{16} t))."
Let us determine the time at which the mass first passes through the equilibrium position. For this we should solve the equation:
"u(t)=0"
"2e^{-\\frac{t}{16}}(\\cos(\\frac{\\sqrt{255}}{16} t)+\\frac{1}{\\sqrt{255}}\\sin(\\frac{\\sqrt{255}}{16} t))=0"
"\\cos(\\frac{\\sqrt{255}}{16} t)+\\frac{1}{\\sqrt{255}}\\sin(\\frac{\\sqrt{255}}{16} t)=0"
"\\tan(\\frac{\\sqrt{255}}{16} t)=-\\sqrt{255}"
"\\frac{\\sqrt{255}}{16} t\\approx -1.51+3.14 n, \\ n\\in\\mathbb Z."
Since the mass first passes through the equilibrium position and "t\\ge 0", we conclude that "n=1". Therefore, "\\frac{\\sqrt{255}}{16} t\\approx -1.51+3.14=1.63" and "t\\approx 1.63\\frac{16}{\\sqrt{255}}\\approx 1.633" (seconds).
Comments
Leave a comment