Question #148576
solve

solve dy/dx = 2( cos^2x) - sinx^2 y^2 /2cosx ;y(0)=-1
1
Expert's answer
2020-12-07T20:49:23-0500

Here problem is not typed properly.

I think problem will be

dydx=(2cos2xsin2x)y22cosx\frac{dy}{dx}= \frac{(2cos²x-sin²x)y²}{2cosx}

dyy2=(2cos2xsin2x)2cosxdx\frac{dy}{y²}= \frac{(2cos²x-sin²x)}{2cosx}dx

Integrating both sides

dyy2=(2cos2xsin2x)2cosxdx\int\frac{dy}{y²}= \int\frac{(2cos²x-sin²x)}{2cosx}dx

=>dyy2=(3cos2x1)2cosxdx=> \frac{dy}{y²}= \frac{(3cos²x-1)}{2cosx}dx

=> dyy2=32cosxdx12secxdx\int\frac{dy}{y²}= \int\frac{3}{2}cosxdx-\int\frac{1}{2} secxdx

=> 1y=32sinx12lnsecx+tanx+C\frac{-1}{y}= \frac{3}{2}sinx-\frac{1}{2} ln|secx+tanx| + C

By given initial condition, when x = 0, y = -1

1 = 0 - 0 + C

So C = 1

So the particular solution is

1y=32sinx12lnsecx+tanx+1\frac{-1}{y}= \frac{3}{2}sinx-\frac{1}{2} ln|secx+tanx| + 1

=> 3ysinx - y ln|secx + tanx| + 2y + 2 = 0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS