Here problem is not typed properly.
I think problem will be
dxdy=2cosx(2cos2x−sin2x)y2
y2dy=2cosx(2cos2x−sin2x)dx
Integrating both sides
∫y2dy=∫2cosx(2cos2x−sin2x)dx
=>y2dy=2cosx(3cos2x−1)dx
=> ∫y2dy=∫23cosxdx−∫21secxdx
=> y−1=23sinx−21ln∣secx+tanx∣+C
By given initial condition, when x = 0, y = -1
1 = 0 - 0 + C
So C = 1
So the particular solution is
y−1=23sinx−21ln∣secx+tanx∣+1
=> 3ysinx - y ln|secx + tanx| + 2y + 2 = 0
Comments