"\\displaystyle\ny = 4xe^x\\sin(2x)\\\\\n\n\\textsf{If}\\,\\, y = e^{\\alpha x}(A\\cos(\\beta x) + B\\sin(\\beta x)),\\\\\n\\textsf{the auxiliary equation is}\\\\\n\nm = \\alpha \\pm j\\beta\\\\\n\n\\therefore m = 1 \\pm j2\\\\\n\n\\textsf{The quadratic equation whose roots are}\\,\\,\n1 \\pm j2 \\,\\, \\textsf{are}\\\\\n\nm^2 - (1 + j2 + 1 - j2)m + (1 + j2)(1 - j2) = 0\\\\\n\nm^2 - 2m + 5 = 0\\\\\n\n\\textsf{For}\\,\\, e^x\\sin(2x) \\,\\, \\textsf{to be multiplied by}\\,\\, x, \\\\\n\\textsf{the roots of}\\,\\,m\\,\\,\\textsf{must be repeated.}\\\\\n\n\\therefore m = 1 \\pm j2 \\,\\,\\textsf{twice}\\\\\n\n(m^2 - 2m + 5)^2 = 0\\\\\n\nm^4 - 4m^3 + 14m^2 - 20m + 25 = 0\\\\\n\n\\therefore \\textsf{The homogenous differential equation is}\\\\\ny^{(iv)} - 4y^{(iii)} + 14y'' - 20y' + 25y = 0"
Comments
Leave a comment