For the given differential equation, A.E. is given by,
D2−2D+1=0
Solving it, we get, D=1,1
Hence, y=aex+bxex (1)
P. I. D2−2D+11x2e2x=(D−1)21x2e2x=e2x(D+2−1)21x2
=e2x(D+1)21x2=e2x(D+1)−2x2
e2x(1−2D+3D3+.....)x2=e2x(x2−4x+6) (2)
So total solution for the equation is,
y=aex+bxex+e2x(x2−4x+6)
Comments