For the given differential equation, A.E. is given by,
"D^2-2D+1=0"
Solving it, we get, "D=1,1"
Hence, "y=ae^{x}+bxe^{x}" (1)
P. I. "\\frac{1}{D^2-2D+1}x^2e^{2x}=\\frac{1}{(D-1)^2}x^2e^{2x}= e^{2x}\\frac{1}{(D+2-1)^2}x^2"
"=e^{2x}\\frac{1}{(D+1)^2}x^2= e^{2x}(D+1)^{-2}x^2"
"e^{2x}(1-2D+3D^3+.....)x^2 = e^{2x}(x^2-4x+6)" (2)
So total solution for the equation is,
"y=ae^{x}+bxe^{x}+e^{2x}(x^2-4x+6)"
Comments
Leave a comment