Question #149013
Solve the differential equation
d^2y/dx^2-2dy/dx+y=x^2e^2x
1
Expert's answer
2020-12-08T09:24:23-0500

For the given differential equation, A.E. is given by,

D22D+1=0D^2-2D+1=0

Solving it, we get, D=1,1D=1,1

Hence, y=aex+bxexy=ae^{x}+bxe^{x} (1)


P. I. 1D22D+1x2e2x=1(D1)2x2e2x=e2x1(D+21)2x2\frac{1}{D^2-2D+1}x^2e^{2x}=\frac{1}{(D-1)^2}x^2e^{2x}= e^{2x}\frac{1}{(D+2-1)^2}x^2


=e2x1(D+1)2x2=e2x(D+1)2x2=e^{2x}\frac{1}{(D+1)^2}x^2= e^{2x}(D+1)^{-2}x^2


e2x(12D+3D3+.....)x2=e2x(x24x+6)e^{2x}(1-2D+3D^3+.....)x^2 = e^{2x}(x^2-4x+6) (2)

So total solution for the equation is,

y=aex+bxex+e2x(x24x+6)y=ae^{x}+bxe^{x}+e^{2x}(x^2-4x+6)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS