uxx−sech4xuyy=0
A=1,B=0,C=−sech4x
Δ=B2−4AC=4sech4x>0
This is hyperbolic PDE.
The characteristic polynomial of the PDE:
A(dxdy)2−B(dxdy)+C=0
dxdy=2AB±B2−4AC=±sech2x
y=tanhx+k1
y=−tanhx+k2
ξ=y−tanhx
η=y+tanhx
We have:
a=0,c=0
Canonical form:
ωξη=0
ω(ξ,η)=f(ξ)+g(η)
The general solution:
u=f(y−tanhx)+g(y+tanhx)
Comments