Question #149760
uxx - (sech^4x)uyy = 0
Reduce into canonical form and solve it
1
Expert's answer
2020-12-15T07:08:40-0500

uxxsech4xuyy=0u_{xx}-sech^4xu_{yy}=0


A=1,B=0,C=sech4xA=1, B=0, C=-sech^4x

Δ=B24AC=4sech4x>0\Delta=B^2-4AC=4sech^4x>0

This is hyperbolic PDE.


The characteristic polynomial of the PDE:

A(dydx)2B(dydx)+C=0A(\frac{dy}{dx})^2-B(\frac{dy}{dx})+C=0


dydx=B±B24AC2A=±sech2x\frac{dy}{dx}=\frac{B\pm\sqrt{B^2-4AC}}{2A}=\pm sech^2x

y=tanhx+k1y=tanhx+k_1

y=tanhx+k2y=-tanhx+k_2


ξ=ytanhx\xi=y-tanhx

η=y+tanhx\eta=y+tanhx


We have:

a=0,c=0a=0, c=0


Canonical form:

ωξη=0\omega_{\xi\eta}=0


ω(ξ,η)=f(ξ)+g(η)\omega(\xi,\eta)=f(\xi)+g(\eta)


The general solution:

u=f(ytanhx)+g(y+tanhx)u=f(y-tanhx)+g(y+tanhx)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS