u x x − s e c h 4 x u y y = 0 u_{xx}-sech^4xu_{yy}=0 u xx − sec h 4 x u yy = 0
A = 1 , B = 0 , C = − s e c h 4 x A=1, B=0, C=-sech^4x A = 1 , B = 0 , C = − sec h 4 x
Δ = B 2 − 4 A C = 4 s e c h 4 x > 0 \Delta=B^2-4AC=4sech^4x>0 Δ = B 2 − 4 A C = 4 sec h 4 x > 0
This is hyperbolic PDE.
The characteristic polynomial of the PDE:
A ( d y d x ) 2 − B ( d y d x ) + C = 0 A(\frac{dy}{dx})^2-B(\frac{dy}{dx})+C=0 A ( d x d y ) 2 − B ( d x d y ) + C = 0
d y d x = B ± B 2 − 4 A C 2 A = ± s e c h 2 x \frac{dy}{dx}=\frac{B\pm\sqrt{B^2-4AC}}{2A}=\pm sech^2x d x d y = 2 A B ± B 2 − 4 A C = ± sec h 2 x
y = t a n h x + k 1 y=tanhx+k_1 y = t anh x + k 1
y = − t a n h x + k 2 y=-tanhx+k_2 y = − t anh x + k 2
ξ = y − t a n h x \xi=y-tanhx ξ = y − t anh x
η = y + t a n h x \eta=y+tanhx η = y + t anh x
We have:
a = 0 , c = 0 a=0, c=0 a = 0 , c = 0
Canonical form:
ω ξ η = 0 \omega_{\xi\eta}=0 ω ξ η = 0
ω ( ξ , η ) = f ( ξ ) + g ( η ) \omega(\xi,\eta)=f(\xi)+g(\eta) ω ( ξ , η ) = f ( ξ ) + g ( η )
The general solution:
u = f ( y − t a n h x ) + g ( y + t a n h x ) u=f(y-tanhx)+g(y+tanhx) u = f ( y − t anh x ) + g ( y + t anh x )
Comments