"u_{xx}-sech^4xu_{yy}=0"
"A=1, B=0, C=-sech^4x"
"\\Delta=B^2-4AC=4sech^4x>0"
This is hyperbolic PDE.
The characteristic polynomial of the PDE:
"A(\\frac{dy}{dx})^2-B(\\frac{dy}{dx})+C=0"
"\\frac{dy}{dx}=\\frac{B\\pm\\sqrt{B^2-4AC}}{2A}=\\pm sech^2x"
"y=tanhx+k_1"
"y=-tanhx+k_2"
"\\xi=y-tanhx"
"\\eta=y+tanhx"
We have:
"a=0, c=0"
Canonical form:
"\\omega_{\\xi\\eta}=0"
"\\omega(\\xi,\\eta)=f(\\xi)+g(\\eta)"
The general solution:
"u=f(y-tanhx)+g(y+tanhx)"
Comments
Leave a comment