uxx−sech4xuyy=0u_{xx}-sech^4xu_{yy}=0uxx−sech4xuyy=0
A=1,B=0,C=−sech4xA=1, B=0, C=-sech^4xA=1,B=0,C=−sech4x
Δ=B2−4AC=4sech4x>0\Delta=B^2-4AC=4sech^4x>0Δ=B2−4AC=4sech4x>0
This is hyperbolic PDE.
The characteristic polynomial of the PDE:
A(dydx)2−B(dydx)+C=0A(\frac{dy}{dx})^2-B(\frac{dy}{dx})+C=0A(dxdy)2−B(dxdy)+C=0
dydx=B±B2−4AC2A=±sech2x\frac{dy}{dx}=\frac{B\pm\sqrt{B^2-4AC}}{2A}=\pm sech^2xdxdy=2AB±B2−4AC=±sech2x
y=tanhx+k1y=tanhx+k_1y=tanhx+k1
y=−tanhx+k2y=-tanhx+k_2y=−tanhx+k2
ξ=y−tanhx\xi=y-tanhxξ=y−tanhx
η=y+tanhx\eta=y+tanhxη=y+tanhx
We have:
a=0,c=0a=0, c=0a=0,c=0
Canonical form:
ωξη=0\omega_{\xi\eta}=0ωξη=0
ω(ξ,η)=f(ξ)+g(η)\omega(\xi,\eta)=f(\xi)+g(\eta)ω(ξ,η)=f(ξ)+g(η)
The general solution:
u=f(y−tanhx)+g(y+tanhx)u=f(y-tanhx)+g(y+tanhx)u=f(y−tanhx)+g(y+tanhx)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments